• 제목/요약/키워드: electrolysis

검색결과 802건 처리시간 0.036초

특허분석에 의한 수전해 수소제조 기술동향 (Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis)

  • 황갑진;강경석;한혜정;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Electrochemical Properties of Novel Metal Powder Electrodes for Polymer Electrolyte Membrane Electrolysis

  • Kim, Chang-Hee;Kang, Kyung-Soo;Park, Chu-Sik;Hwang, Gab-Jin;Bae, Ki-Kwang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1227-1228
    • /
    • 2006
  • The electrochemical properties of novel metal powders were investigated for the electrode materias of polymer electrolyte memebrane electrolysis. Two types of Pt black and $IrO_2$ powder electrodes were hot-pressed on the polymer electrolyte membrane to form membrane electrode assembly. The galvanodynamic polarization methode was used to characterize the electrochemical properties of both electrodes. From the experimental results, we concluded that the $IrO_2$ powder electrode exhibits better electrochemical performance than Pt black as cathode material for the electrolysis.

  • PDF

저온형 알칼라인 산소발생반응의 문제점과 perovskites촉매 개발 동향 (Various Problems in Oxygen-evolution Reaction Catalysts in Alkaline Conditions and Perovskites Utilization)

  • 이진구
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.182-188
    • /
    • 2019
  • Alternative energy sources to the systems using hydrocarbon fuels have been actively developed due to exhaustion of fossil fuels and issue of global warming by CO2. Fuel cells have attracted great attentions to solve these issues as electricity can be produced with product of clean H2O by using H2-O2 as a fuel. Besides, using reverse reactions make it possible to produce H2 and O2 gas from electrolysis of water. There are various fuel cells systems depending on the types of electrolyte, and in this mini-reviews, the main aim is to focus on perovskite oxides as a catalyst for oxygen-evolution reactions in alkaline electrolysis and its potential to application of alkaline electrolysis systems.

고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화 (Performance Change according to the Catalyst Intrusion Rate in the MEA for the PEM Water Electrolysis)

  • 김홍열;이지정;이재영;이홍기
    • 신재생에너지
    • /
    • 제5권4호
    • /
    • pp.75-78
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

An Experimental Study of Non-Electrolysis Anti-Microfouling Technology Based on Bioelectric Effect

  • Young Wook Kim
    • 한국해양공학회지
    • /
    • 제37권4호
    • /
    • pp.172-179
    • /
    • 2023
  • Biofouling initiated by biofilm (slime) formation is a key challenge for practical ocean engineering and construction. This study evaluated a new anti-biofilm technology using bioelectricity. The anti-microfouling electrical technology is based on the principles of the bioelectric effect, known as the application of an electrostatic force for biofilm removal. Previously, the electricity was optimized below 0.82V to avoid electrolysis, which can prevent the production of biocides. A test boat comprised of microelectronics for electrical signal generation with electrodes for an anti-biofouling effect was developed. The tests were conducted in the West Sea of Korea (Wangsan Marina, Incheon) for three weeks. The surface biofouling was quantified. A significant reduction of fouling was observed under the bioelectric effect conditions, with approximately 30% enhanced prevention of fouling progress (P<0.05). This technology can be an alternative eco-friendly technique for anti-microfouling that can be applied for canals, vessels, and coastal infrastructure because it does not induce electrolysis.

재생에너지 기반 알칼라인 수전해 장치(2 Nm3/hr) 위험요인 고찰 (A Study on Hazard of Renewable Energy based Alkaline Water Exectrolysis Equipment)

  • 김현기;서두현;김태훈;이광원;이동민;신단비
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.55-60
    • /
    • 2022
  • As interest in sustainable and eco-friendly energy sources is increasing due to various problems in the carbon society, a hydrogen economy using hydrogen as a main energy source is emerging. While the natural gas reforming method generates carbon dioxide, the water electrolysis method based on renewable energy is eco-friendly. The water electrolysis device currently being developed uses a 2 Nm3/hr class alkaline aqueous solution as an electrolyte and produces hydrogen based on renewable energy. In this study, risk assessment was conducted for these water electrolysis devices

Cation exchange membrane and anion exchange membrane aided electrolysis processes for hypochlorite generation

  • Seong K. Kim;Dong-Min Shin;Ji Won Rhim
    • Membrane and Water Treatment
    • /
    • 제14권2호
    • /
    • pp.55-63
    • /
    • 2023
  • In this study, the influence of different IEMs (ion exchange membranes) to performance of the hypochlorite electrolysis unit with Cl2 recovery stream was investigated. More specifically, Nafion 117-a representative cation exchange membrane (CEM)-and aminated polypheylene oxide (APPO)-an anion exchange membrane (AEM)-were installed in the hypochlorite electrolysis unit, and the performance and the energy efficiency of the units were evaluated and compared. Regardless of whether CEM (Nafion 117) or AEM (APPO) was installed, the rate of hypochlorite generation was increased (by up to 24.3% and 22.2% for Nafion 117 and APPO, respectively) compared with the unit without an IEM. On the other hand, the power efficiency and the optimum operation condition of hypochlorite production units seem to depend on the conductivity and stability of the installed IEM. As the result, between Nafion 117 and APPO, higher performance and efficiency were achieved with Nafion 117, due to excellent conductivity and stability of the membrane.

NiO/YSZ/Pt 전해셀의 고온 수증기 전해에 의한 수소제조 특성 (Hydrogen Production by the High Temperature Steam Electrolysis of NiO/YSZ/Pt Cell)

  • 유지행;김영운;이시우;서두원;홍기석;한인섭;우상국
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.62-68
    • /
    • 2006
  • High temperature electrolysis is a promising technology to produce massively hydrogen using renewable and nuclear energy. Solid oxide fuel cell materials are candidates as the components of steam electrolysers. However, the polarization characteristics of the typical electrode materials during the electrolysis have not been intensively investigated. In this study, NiO electrode was deposited on YSZ electrolyte by spin coat process and firing at $1300^{\circ}C$. Pt electrode was applied on the other side of the electrolyte to compare the polarization characteristics with those by NiO during electrolysis. The $H_2$ evolution rate was also monitored by measuring the electromotive force of Lambda probe and calculated by thermodynamic consideration. At low current density, Pt showed lower cathodic polarization and thus higher current efficiency than Ni, but the oxidation of Ni into NiO caused the increase of anodic resistance with increasing current density. High overpotential induced high power consumption to produce hydrogen by electrolysis.