• Title/Summary/Keyword: electroluminescent device

Search Result 225, Processing Time 0.036 seconds

Luminescent Characteristics of SrS:Cu,X Thin-Film Electroluminescent(TFEL) Deviecs depending on Coactivatiors (부활성제에 따른 SrS:Cu,X 박막 전계발광소자의 발광 특성)

  • Lee, Soon-Seok;Ryu, Chang-Keun;Lim, Sung-Kyoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • Luminescent characteristics of SrS:Cu,X TFeL devices fabricated by electron-beam deposition system were studied. The SrS powders were used as the host materials and Cu, $CuF_2,\;Cu_2S$ or CuCl powders were added as the luminescent center. The emission spectra of the SrS:Cu,X TFEL devices strongly depended on coactivators. The luminance($L_{40}$) and efficiency(${\eta}_{20}$) of SrS:$Cu_2S$ TFEL device were 1443 cd/$m^2$ and 2.44 lm/w, respectively. Green color was observed from this TFEL device. The luminous efficiency of SrS:$Cu_2S$ TFEL device was higher than that of ZnS:Tb TFEL device, and it also could be good green phosphors for TFEL devices. The luminance($L_{40}$) and efficiency(${\eta}_{20}$) of SrS:CuCl TFEL device were 262 cd/$m^2$ and 0.26 lm/w, respectively. Blue color was emitted from this TFEL device.

  • PDF

Comparison of organic EL characteristics of low mass dye and polymer material with the same chromophore (동일한 발광기를 가진 저분자색소와 고분자물질의 유기 EL특성의 비교)

  • Kim, Dong-Uk
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.177-183
    • /
    • 1999
  • A Polymer material, PU-BCN and a low molar mass material D-BCN with the same chromophore were evaluated by fabricating various electroluminescent(EL) devices. A molecular structure of the chromophore was composed as two cyano groups for electron-injection and transport and two triphenylamine groups for hole-injection and transport. Various kinds of EL devices with two different types of EL materials, PU-BCN and D-BCN were fabricated, which were an Indium-tin oxide(ITO)/PU-BCN or D-BCN/MgAg device as a single-layer device(SL) and an ITO/PU-BCN or D-BCN/oxadiazole ferivative/MgAg as a double-layer device(DL-E) and an ITO/triphenylamine derivative/D-BCN/MgAg as a double-layer device(DL-H) device. Two kinds of materials, PU-BCN and D-BCN showed the same emission characteristics in the high current density and excellent EL characteristics even in the SL devices. Maximum EL peaks revealed red emission of about 640 nm, which were corresponded with the fluorescence peaks of the films of two materials.

  • PDF

Electrical and optical characeristics of ZnS:Mn thin-film electroluminescent(TFEL) devices grown by atomic layer epitaxy (Atomic layer epitaxy(ALE) 방법으로 제작된 ZnS:Mn 박막전계발광소자의 전기, 광학적 특성)

  • 이순석;윤선진;임성규
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.52-59
    • /
    • 1998
  • The ZnS:Mn thin film electroluminescent(TFEL) devices fabricated by ALE system were investigated. Yellow-orange light emission was observed when the applied voltage exceeded 134 V and luminance increased sharply as the applied voltage increased. Luminance of 568 Cd/c $m^{2}$ was obtained under 1 KHz sinusoidal voltage wave application at the peak applied voltage of 230 V. The peak wavelength of the emissionwas 577 nm. The C-V, Q-V, $Q_{t}$ - $F_{p}$ , L- $Q_{cond}$, and V- $Q_{pol}$ have been measured under theapplication of the trapezoidal wave with its pulse width varying 0 to 75 .mu.sec. The phoshor and the insulator capacitance of the TFEL device under test were 24.3 nF/c $m^{2}$ and 9 nF/c $m^{2}$, respectively. It was observed that the threshold voltage changed from 137V to 100V as the pulse width varied from 0 to 75 .mu.sec. The L- $Q_{cond}$ characteristics showed that the light emission increased in proportion to the $Q_{cond}$. The luminance increased from 386 Cd/ $m^{2}$ to 607 Cd/ $m^{2}$ when the $Q^{+}$$_{cond}$ increased from 1.3 .mu.C/c $m^{2}$ to 2.3 .mu.C/c $m^{2}$. The V- $Q_{pol}$ characteristics showed that the V was inversely proportional to $Q_{pol}$./. th/ was inversely proportional to $Q_{pol}$./. pol/./.

  • PDF

Thermal Stability in Organic and Polymeric Thin Films for Organic Electroluminescent Display

  • Kim, Young-Kyoo;Park, Seong-Sik;Jung, Young-Yi;Han, Ki-Jong;Lee, Jae-Gyoung;Hwang, Ha-Keun;Choi, Dong-Kwon;Keum, Ji-Hwan;Im, Woo-Bin;Lee, Hyo-Jung;Lee, Hyung-Sik;Kim, Sun-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.205-206
    • /
    • 2000
  • The capacitance-temperature (C-T) measurement technique is proposed in the present work to investigate the thermal stability of organic and polymeric thin films for organic electroluminescent display (OELD). The single layer devices with the individual materials were subjected to the C-T measurement, prior to the examination of the complete OELD. The single layer devices with the small molecules destroyed below $180\;^{\circ}C$ depending on the kinds of materials. However, the device with the hole-transporting polyimide did not show any relaxation up to $200\;^{\circ}C$. The small molecule based OELDs failed to emit light after annealing, whereas that with the hole-transporting polyimide worked well in spite of large reduction in intensity.

  • PDF

A Study on New Materials for Organic Active Devices (유기 능동 소자 제작을 위한 신소재 연구)

  • Lee, Sung-Jae;Lim, Sung-Taek;Shin, Dong-Myung;Choi, Jong-Sun;Lee, Hoo-Sung;Kim, Young-Kwan;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.174-177
    • /
    • 2000
  • The effect of a-sexithiophene(${\alpha}-6T$) layers on the light emitting diode (LED) were studied. The ${\alpha}-6T$ was used for a buffer layer in electroluminescent (EL) devices. Enhanced carrier (hole) injection and improved emission efficiency were observed. Carrier injection characteristics were investigated as a function of ${\alpha}-6T$ later thickness. The efficiency of the electroluminescence was proportional to the thickness of ${\alpha}-6T$ layer. The highest efficiency was observed 600A of ${\alpha}-6T$ later, which was about 1.5 times higher than that of device without ${\alpha}-6T$ later. The device with a-6T showed an operation voltage lowered by 2V. The ${\alpha}-6T$ layer can substitute hole blocking layer, and control charge injection properties.

A novel red light-emitting material and the characteristics of OLEDs using the same as red dopant

  • Lim, Seung-Han;Park, Jung-Hyun;Seo, Ji-Hoon;Ryu, Gweon-Young;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1573-1576
    • /
    • 2007
  • ABCV-Py, a new red fluorescent material, in which two identical electron donor (dimethylamino group) and acceptor (cyano group) moieties are linked to two independent biphenyl groups which share the same core phenyl, has been synthesized for use in OLED application. Performance of red doped electroluminescent devices using ABCV-Py as dopant were measured with various host materials, $Alq_3$, CBP, DPVBi, and p-terphenyl. The performance of device with DPVBi host material was better than those with other host materials and high doping concentration could be applied on device with ABCV-Py as dopant.

  • PDF

Emission Properties of Red OELD with $Znq_2$ and dye (Znq2와 dye에 의한 적색 유기 전계 발광 소자의 발광특성)

  • Cho, M.J.;Choi, W.J.;Park, C.H.;Lim, K.J.;Park, S.K.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1466-1468
    • /
    • 2001
  • For the full color organic electro-luminescent device, essentially, red, green, and blue emissions are required. But red emission is not to reach minimum level of practical use 31[lm/W]. In order to optimize color purity and power consumption requirements, it is important for the materials development efforts to search for improvements in red emission effisiency. In this study, the bis(8-oxyquinolino)zinc II ($Znq_2$) were synthesized successfully from zinc chloride($ZnCl_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye(DCJTB)-doped and inserted $Znq_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4.4'-diamine(TPD), and the host material of emission layer is $Znq_2$. For the inserting of $Znq_2$, efficiency increased.

  • PDF

Improvement of Organic Electroluminescent Device Performance by $O_2$ Plasma Treatment of ITO Surface (ITO 박막의 $O_2$ 플라즈마 처리에 의한 휴지전기발광소자의 특성 향상)

  • Yang, Ki-Sung;Kim, Doo-Seok;Kim, Byoung-Sang;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.137-140
    • /
    • 2004
  • We treated $O_2$ plasma on ITO thin film using RIE (Reactive Ion Etching) system, and analyzed the ingredient of ITO thin film according to change of processing conditions. The ingredient analysis of ITO thin film was used by EDS (Energy Dispersive Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy) to compare and analyze the ingredient of bulk and surface. We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by using AFM (Atomic Force Microscope). Finally, we fabricated OLEDs (Organic Light-Emitting Diodes) device using substrate that was treated optimum ITO surface. The result of the study for electrical and optical properties using I V L System (Flat Panel Display Analysis System), we confirmed that electrical properties (I-V) and optical properties (L-V) were improved.

  • PDF

Fabrication of Organic Electroluminescent Device and electro-optical properties using metal-chelates($Snq_2,Snq_4$) for Emitting Material Layer (금속-킬레이트계($Snq_2,Snq_4$) 발광층을 이용한 유기 전기 발광 소자의 제작과 전기.광학적 특성)

  • Yoon, H.C.;Yoo, J.H.;Kim, B.S.;Kim, J.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this study, multi layer type OLED(Organic Light Emitting Diode) has been fabricated using $Snq_2$, $Snq_4$, and $Alq_3$ for development of high efficiency, electrical and optical properties of multi layer type OLED investigated. The HTL(Hole Transfer Layer) and EML(Emitting Material Layer) were fabricated by using vacuum evaporation on ITO electrode, and its thickness controlled using thickness monitor. Al was used as a cathode. The electrical and optical properties such as J-V, brightness-V and EL spectrum of OLED device was measured using I.V.L.T system. The result, brightness of $Alq_3$, $Snq_2$ and $Snq_4$ were $3900cd/m^2$, $63cd/m^2$ and $23cd/m^2$ respectively.

  • PDF

The characteristics of the electroluminescent devices using Ir$(ppy)_3$ (Ir$(ppy)_3$를 발광물질로 이용한 EL소자의 특성분석)

  • Kim, Jun-Ho;Kim, Yun-Myoung;Ha, Yun-Kyoung;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.437-439
    • /
    • 2000
  • The internal quantum efficiency of EL devices using fluorescent organic materials is limited within 25% because of the triplet excitons which can hardly emit light. So there has been considerable interest in finding ways to obtain light emission from triplet excitons. One approach has been to add phosphorescent compounds to one of the layers in an EL device. Then triplet excitons can transfer to these phosphorescent molecules and emit light. In this study, multilayer organic light-emitting devices with phosphorescent emitter, tris (2-phenylpyridine)iridium ($Ir(ppy)_3$) were prepared. The device exhibited power luminous efficiency of 1.07 1m/W at the luminance of $61.6\;cd/m^2$ diriven at the voltage of 9 V and current density of $1.9mA/cm^2$. At the luminance of $100\;cd/m^2$, the luminous efficiency was obtained 1.05 lm/W with the voltage of 9.5 V and the corrent density of $2.8\;mA/cm^2$.

  • PDF