• Title/Summary/Keyword: electrokinetics (EK)

Search Result 5, Processing Time 0.019 seconds

A Study of Improvement Pile friction in Marine Clay using Electrokinetics Treatment (전기동역학을 이용한 해성 점토 지반내의 말뚝 마찰지지력 향상에 관한 연구)

  • Lee, Kwang-Yeol;Gu, Tae-Gon;Tjandra, Daniel;Hyun, Jae-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.211-218
    • /
    • 2004
  • The objective of this study is to enhance the ultimate bearing capacity of piles embedded in marine clay by electrokinetic(EK). The focus of improvement is at interlace between soil and pile. A series laboratory test was performed in EK cell. In each of test, the pile in the centre as anode is surrounded by cathode and it was installed in the vicinity of pile with triangular layout. The pile was made by stainless and embedded with 30cm of depth. Afterward, the DC voltage was applied to electrode over period of time. It caused flowing water from anode to cathode, thus the soil in the center of box has higher bearing capacity value than in the side of box has. It is shown by increasing of un-drained shear strength(Cu) near the pile and also ultimate bearing capacity of pile increase after EK treatment. In the future work, the continuous of this study is finding the effective DC voltage and makes EK treatment more applicable in the field.

  • PDF

Remediation of contaminated soil by the coupled technique of electrokinetic method and permeable reactive method (동전기정화 및 투수성반응 복합기술에 의한 오염지반의 복원)

  • Chung, Ha-Ik;Lee, Myung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.348-351
    • /
    • 2006
  • This paper presents preliminary laboratory investigations on the electrokinetic (EK) remediation coupled with permeable reactive barrier (PRB) system. Atomizing slag was adopted as a PRB reactive material for remediation of groundwater contaminated with inorganic and/or organic substances. A series of laboratory experiments were performed with variable conditions such as (i) type of contaminant, (ii) applied electric field strength, (iii) processing time, and (iv) the application of PRB system. From the preliminary investigations, the coupled technology of EK with PRB system would be effective to remediate contaminated grounds without the extraction of pollutants from subsurface due to the reactions between the reactive materials and contaminants.

  • PDF

Electrokinetic Extraction of Metals from Marine Sediment (중금속으로 오염된 해양퇴적토의 전기동력학적 정화)

  • Kim, Kyung-Jo;Yoo, Jong-Chan;Yang, Jung-Seok;Baek, Kitae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.733-738
    • /
    • 2013
  • Sediment contains a high fraction of organic matter, high buffering capacity, and a large portion of fine grained particles such as silt and clay, which are major barriers to remove heavy metals from sediments. In this study, a lab-scale electrokinetic (EK) technique was applied to remove heavy metals effectively from marine sediment at a constant voltage gradient of 2 V/cm. A concentration of 0.1 M of ethylenediaminetetraacetic acid (EDTA), citric acid (CA), $HNO_3$, and HCl were circulated in the cathode, and tap water was circulated in the anode. CA extracted 92.4% of Ni, 96.1% of Cu, 97.1% of Zn, and 88.1% of Pb from marine sediment. A higher voltage gradient enhanced the transport of citrate and EDTA into the sediment and, therefore, increased metal extraction from the marine sediment through a complexation reaction between metals and the chelates. Based on these results, the electrokinetic process using a high voltage gradient with EDTA and CA might be useful to extract heavy metals from marine sediment.

계면활성제와 동전기 기술을 이용한 오염토양정화에서 APG사용의 타당성에 관한 연구

  • 양지원;이유진;박지연;김상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.243-246
    • /
    • 2002
  • Surfactant-enhanced electrokinetic remediation is an emerging technology that can effectively remove hydrocarbons from low-permeability soils. In this study, the electrokinetic remediation using APG(alkyl polyglucoside) was conducted for the removal of phenanthrene from kaolinite. APG, which was an environmentally compatible and non-toxic surfactant, was used at concentrations of 5, 15, and 30g/1 to enhance the solubility of phenanthrene. Also an electrolyte solution was used for considering a relation between electrical potential gradient and removal efficiency of phenanthrene. When the electrolyte solution was used, it represented low electrical potential gradient, but the removal efficiency was lower than that of no electrolyte system. Removal efficiency of phenanthrene in EK process using surfactant solution depended on concentration of surfactant. Because surfactant increased the solubility and the mobility of phenanthrene, when surfactant concentration was high, high removal efficiency was observed.

  • PDF

Treatment of Heavy Metals and Phenol in Contaminated Soil Using Direct Current and Pulse Voltage (직류 전원과 펄스 전원을 이용하여 오염된 토양에서의 중금속과 페놀 처리)

  • Choi, Changsik;Hong, Bumeui;Choi, Hee Young;Lee, Eunsil;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.606-611
    • /
    • 2016
  • In this work, the treatment of heavy metals and phenol in the contaminated soil was investigated by applying direct current (DC) and pulse voltage. When the DC was used, the removal efficiencies for Cu, Zn, As, and Pb were 73, 88, 10, and 10%, respectively, and more than 95% for phenol was removed. Furthermore, when a pulse voltage was employed the removal efficiencies for Cu, Zn, As, and Pb were 88, 92, 40, and 40%, respectively, and 87% of phenol was removed. The results indicate that the application of a pulse voltage for the treatment of contaminated soil reduced electro-osmosis, but increased the rate of electric current movement of heavy metals. In addition, the removal efficiencies for As and Pb have been improved due to the enhanced adsorption capacity of clay components in the soil. Therefore, these experimental results could be effectively applied in remediation technology for the treatment of various heavy metals and phenol.