• Title/Summary/Keyword: electroflotation

Search Result 15, Processing Time 0.024 seconds

A Study on Inorganic Chemical Treatment Method of Animal Wastes Using by Electroflotation for Recycle (전해부상 장치를 이용한 축산폐수의 유기질비료와 용수 재활용에 관한 연구)

  • Sung Ki-chun;Kim Yong-Ryul;Kim Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.588-591
    • /
    • 2004
  • There is an increasing interest in the use of electrochemical methods for the animal waste treatment The technologies using the electrochemical method provide ideal tools for approaching industrial and animal wastes problems. Unlike other chemical treatments, the electrochemical systems do not make the volume of the secondary waste increase. The electrochemical methods can be operated with electrochemical apparatus and inorganic agent allow selective separation and recovery and even quieter than others. This study concerns design factors, electrode construction and wastewater treatment process of the electrochemical apparatus. The experiment of color, COD and BOD removal is much effective in using electrochemical method with ultrasonication and ozonation.

  • PDF

Zeta Potential Measurement of Micro Bubbles Generated by Electrolysis (전기분해(電氣分解)시 알루미늄 극판(極板)에서 발생(發生)한 미세기포(微細氣泡)의 제타전위(電位) 측정(測定))

  • Kim, Won-Tae;Han, Moo-Young;Lee, Sung-Woo;Han, Yi-Seon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.343-349
    • /
    • 2000
  • Techniques such as dissolved air flotation and electroflotation, which utilize micro bubbles, are increasingly used for water and wastewater treatment. Most studies have concentrated on particle characteristics. Pretreatments that manipulate particle size and zeta potential were considered important. A recent study, which modeled the collision mechanism between micro bubbles and particles in dissolved air flotation, suggested bubble characteristics should also be important. Hydrogen micro bubbles were generated electrolytically and their zeta potentials measured under various conditions using a novel electrophoresis method. Effects of several parameters were investigated. Bubble zeta potentials were found to be pH dependent, and to have a negative value around neutral pH, becoming zero or positive at lower pH. The pH at zero zeta potential was 5.0 under study conditions. Using artificial solution and tap water, at fixed pH, bubble zeta potentials varied with solution composition. Zeta potentia]s of bubbles were affected by the types of cations and anions in solution but not by the voltage applied. These findings will help improve efficiencies of particle removal processes that utilize micro bubbles. As bubble zeta potential varies with solution composition, it needs to be measured for each composition to understand those effects, which increase removal efficiency.

  • PDF

The Reaction Efficiency and Surface Characteristics for Metallic Ions in Air Flotation Process (부상공정에서 금속이온의 기포 표면 전위 특성 및 반응효율)

  • Han, Moo-Young;Dockko, Seok;Kim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.222-227
    • /
    • 2004
  • Flotation processes involve the use of very small bubbles (micro-bubbles) to separate particles from water. The process has become a good alternative to sedimentation, especially where the particles are small or of low density. Although the flotation process commences with a collision between particles and bubbles, most research has been focused only on the characteristics of the particles. In this paper, recent theoretical and experimental research on the characteristics of bubbles is summarized. The effect on the collision efficiency of the size and charge of bubbles is calculated through trajectory analysis. The size and charge of bubbles are measured under different conditions and the ramifications of the results are discussed. The results may lead to a better understanding and optimization of the existing process. In particular, we discuss an idea that a new advanced flotation process might be possible by the modification of the characteristics of the bubble alone or of both bubble and particle.

An assessment on feasibility of flotation as a secondary clarifier of an activated sludge process (생물반응공정에 대한 고액분리조로서 부상공정의 적용성 평가)

  • Chung, Chong Min;Kim, Yun Jung;Cho, Kang Woo;Lee, Sang Hyup;Hong, Seok Won;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.551-559
    • /
    • 2008
  • An experimental study was carried out to evaluate the potential of flotation process for the secondary clarifier of an activated sludge process. Flotation techniques, applied in this study, include electrofloation (EF) which generated fine bubbles smaller than $35{\mu}m$ in average and diffuser flotation (DF) which generated fine bubbles smaller than $55{\mu}m$ in average. The batch experiments were done with activated sludge displaying various characteristics. It was shown that the efficiency of solids/liquid separation was reduced as the diluted sludge volume index ($DSVI_{30}$) of activated sludge increased. The dependency, however, gradually decreased as the gas to solids (G/S) ratio increased. Thickening efficiency of EF was more than 2~10 times and DF process was more than 1.5~5 times as compared with gravity sedimentation (GS). Stable sludge blanket was maintained regardless of sludge settleability when the G/S ratio was 0.019 in the EF. On the other hand, Serious deterioration in the sludge blanket was observed in the DF depends on G/S ratio and sludge settleability. And For EF and DF, the suspended solids concentration of effluent was not nearly influenced on settleability of activated sludge and more clear than GS. A biological nutrient removal (BNR) process, combined with EF as a secondary clarifier was operated for three months. The mean MLSS (mixed liquid suspended solids) concentration in the reactor and mean solids concentration of return sludge were estimated to be 5,340 mg/L and 16,770 mg/L, respectively. The water quality of effluent was considerably stable and low value was accomplished, that was, standard suspended solids concentration $0.07{\pm}0.51mg/L$ and standard turbidity $1.44{\pm}0.56NTU$. The EF could be applicable for enhancement of efficiency of activated sludge system as well as improvement of the water quality of effluent.

Effects of Sludge SVI and Chemical Conditioning on Activated Sludge Flotation Thickening (슬러지 SVI와 화학적 개량이 슬러지부상농축에 미치는 영향)

  • Lee, Ki Yong;Kim, Shin Jo;Kwon, Oh Sang;Yeom, Ick Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.349-355
    • /
    • 2010
  • Electroflotation (EF) was conducted for activated sludge thickening to investigate the effects of sludge SVI (sludge volume index) and chemical conditioning. Return sludge samples were used for the experiment, which were collected from municipal wastewater treatment plants. The performance of sludge thickening was significantly dependent on sludge SVI. For the sludges with SVI values in a range from 50 to about 150 mL/g, the maximum float content decreased rapidly from 8.4 to 3.5% and flotation compressibility followed the same pattern. In cases of sludges with SVI higher than 150 mL/g, those results showed low content levels without large changes. Gas/solids ratio tended to increase with an increase in SVI. When polyelectrolyte was added into sludges for the conditioning, compressibility increased up to 75% and gas/solids ratio was reduced up to about 35% under the condition of microbubble production rate of 530 mL/h, however, there was no consistent effect of chemical conditioning on the maximum float solids content; some cases were positive but the others negative. It was expected that the optimum dose of electrolyte depends on sludge SVI and an excessive chemical dose causes a performance deterioration of flotation thickening.