• Title/Summary/Keyword: electrodes corrosion

Search Result 107, Processing Time 0.033 seconds

Corrosion Performance of Cu Bonded Grounding-Electrode by Accelerated Corrosion Test

  • Choi, Sun Kyu;Kim, Kyung Chul
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.211-217
    • /
    • 2018
  • Natural degradation of grounding-electrode in soil environment should be monitored for several decades to predict the lifetime of the grounding electrode for efficient application and management. However, long-term studies for such electrodes have many practical limitations. The conventional accelerated corrosion test is unsuitable for such studies because simulated soil corrosion process cannot represent the actual soil environment. A preliminary experiment of accelerated corrosion test was conducted using existing test standards. The accelerated corrosion test that reflects the actual soil environment has been developed to evaluate corrosion performances of grounding-electrodes in a short period. Several test conditions with different chamber temperatures and salt spray were used to imitate actual field conditions based on ASTM B162, ASTM B117, and ISO 14993 standards. Accelerated degradation specimens of copper-bonded electrodes were made by the facile method and their corrosion performances were investigated. Their corrosion rates were calculated to $0.042{\mu}m/day$, $0.316{\mu}m/day$, and $0.11{\mu}m/day$, respectively. These results indicate that accelerated deterioration of grounding materials can be determined in a short period by using cyclic test condition with salt spray temperature of $50^{\circ}C$.

Application of the Electrochemical Noise Method with Three Electrodes to Monitor Corrosion and Environmental Cracking in Chemical Plants

  • Ohtsu, Takao;Miyazawa, Masazumi;Ebara, Ryuicluro
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Recently an electrochemical noise method (ENM) with three electrodes has gained attention as a corrosion monitoring system in chemical plants. So far a few studies have been carried out for localized corrosion and environmental cracking of chemical plant materials. In this paper the ENM system is briefly summarized. Then an application of ENM to general corrosion for chemical plant materials is described. The emphasis is focused upon the analysis of stress on the corrosion cracking process of austenitic stainless steel in 30% $MgCl_2$ aqueous solution and the corrosion fatigue crack initiation process of 12 Cr stainless steel in 3% NaCl aqueous solution by ENM. Finally future problems for ENM to monitor regarding corrosion and environmental cracking in chemical plants are discussed.

Effects of Platinum Nano Electrodeposits on the Corrosion of Carbon Substrate in an Acidic Environment (백금 나노 도금입자가 산성 환경에서 탄소기판 부식에 미치는 영향)

  • Choe, Min-Ho;Park, Chan-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.34-35
    • /
    • 2008
  • We investigated the effects of Pt nano electrodeposits on the corrosion of carbon substrate in an acidic solution. The electrodes for experiments were prepared by electrodepositing Pt on carbon substrate in a solution of 5 mM $H_2PtCl_6$ and 0.5 M $H_2SO_4$ using pulse deposition technique. In cyclic voltammograms for the carbon electrodes with and without Pt nano electrodeposits, total anodic current including both currents from oxygen evolution reaction and carbon corrosion increased abruptly above a critical potential. In addition, the critical potential of the carbon electrodes with Pt nano electrodeposits was lower than that of bare carbon electrode. This phenomenon was more prominent at $75^{\circ}C$ than $25^{\circ}C$. In potentiostatic experiments, the current transients and the corresponding power spectral density increased with increasing the applied potential for the electrodes. Furthermore, the current transients for the carbon electrodes with Pt nano electrodeposits were much higher than those for the bare carbon substrate. This indicates that the corrosion of carbon substrate can be highly accelerated by Pt nano electrodeposits.

  • PDF

Electrochemical Evaluation of Corrosion Property of Welded Zone of Seawater Pipe by DC Shielded Metal Arc Welding with Types of Electrodes (선박 해수배관에서 용접봉의 종류에 따라 직류 아크 용접한 용접부위의 부식특성에 관한 전기화학적 평가)

  • Lee, Sung-Yul;Lee, Kyu-Hwan;Won, Chang-Uk;Na, Shane;Yoon, Young-Gon;Lee, Myeong-Hoon;Kim, Yun-Hae;Moon, Kyung-Man;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.79-84
    • /
    • 2013
  • The seawater pipes in the engine rooms of ships are surrounded by severely corrosive environments caused by fast flowing seawater containing chloride ions, high conductivity, etc. Therefore, it has been reported that seawater leakage often occurs at a seawater pipe because of local corrosion. In addition, the leakage area is usually welded using shielded metal arc welding with various electrodes. In this study, when seawater pipes were welded with four types of electrodes(E4311, E4301, E4313, and E4316), the difference between the corrosion resistance values in their welding zones was investigated using an electrochemical method. Although the corrosion potential of a weld metal zone welded with the E4316 electrode showed the lowest value compared to the other electrodes, its corrosion resistance exhibited the best value compared to the other electrodes. In addition, a heat affected zone welded with the E4316 electrode also appeared to have the best corrosion resistance among the electrodes. Furthermore, the corrosion resistance of the weld metal zone and heat affected zone exhibited relatively better properties than that of the base metal zone in all of the cases welded with the four types of electrodes. Furthermore, the hardness values of all the weld metal zones were higher than the base metal zone.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

  • Choi, Min-Ho;Beom, Won-Jin;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.281-288
    • /
    • 2010
  • This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at $75^{\circ}C$ than $25^{\circ}C$. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution.

An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding of the Cast Iron

  • Moon, Kyung Man;Kim, Jin Gyeong;Lee, Myung Hoon;Kim, Ki Joon
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.134-137
    • /
    • 2008
  • Cold arc welding of cast iron has been widely used with repair welding of metal structures. However its welding is often resulted in the galvanic corrosion between weld metal zone and heat affected zone(HAZ) due to increasing of hardness. In this study, corrosion properties such as hardness, corrosion potential, surface microstructures, and variation of corrosion current density of welding zone with parameters of used electrodes for cast iron welding were investigated with an electrochemical evaluation. Hardness of HAZ showed the highest value compared to other welding zone regardless of kinds of used electrodes for cast iron welding. And its corrosion potential was also shifted to more negative direction than other welding zone. In addition, corrosion current density of WM in polarization curves was qualitatively smaller than that of HAZ. Therefore galvanic corrosion may be apparently observed at HAZ. However galvanic corrosion may be somewhat controlled by using an optimum welding electrode.

Evaluation of Corrosion Characteristics on Welding Part of Leakage Water Pipe by Underwater Welding Electrode (수중용접봉으로 용접한 누수 배관 용접부위의 부식 특성 평가)

  • Kim, Jin-Gyeong;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.93-94
    • /
    • 2006
  • The repair welding of small leakage parts on the water pipeline in engine room is often and important factor in standby and emergency condition in a ship. So, the purpose of this study is to evaluate the corrosion characteristics of welding part of leakage water pipe in case of some underwater welding electrodes. The corrosion current density between welding metal and base metal was considerably different according to used underwater welding electrodes. In case of DC welding, its corrosion characteristics was better than that of AC welding.

  • PDF

FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.297-314
    • /
    • 2016
  • As the study of internal corrosion of pipeline need a large number of experiments as well as long time, so there is a need for new computational technique to expand the spectrum of the results and to save time. The present work represents a new non-destructive evaluation (NDE) technique for detecting the internal corrosion inside pipeline by evaluating the dielectric properties of steel pipe at room temperature by using electrical capacitance sensor (ECS), then predict the effect of pipeline environment temperature (${\theta}$) on the corrosion rates by designing an efficient artificial neural network (ANN) architecture. ECS consists of number of electrodes mounted on the outer surface of pipeline, the sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of two dimensional capacitance sensors are illustrated. The variation in the dielectric signatures was employed to design electrical capacitance sensor (ECS) with high sensitivity to detect such defects. The rules of 24-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. A feed-forward neural network (FFNN) structure are applied, trained and tested to predict the finite element (FE) results of corrosion rates under room temperature, and then used the trained FFNN to predict corrosion rates at different temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an FFNN results, thus validating the accuracy and reliability of the proposed technique and leads to better understanding of the corrosion mechanism under different pipeline environmental temperature.

Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling

  • Chai, Zhaoyun;Bai, Jinbo;Sun, Yaohui
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.157-164
    • /
    • 2019
  • The effect of electrochemical modification of the physical and mechanical properties of sandstone from Paleozoic coal measure strata was investigated by means of liquid nitrogen physical adsorption, X-ray diffraction and uniaxial compressive strength (UCS) tests using purified water, 1 mol/L NaCl, 1 mol/L $CaCl_2$ and 1 mol/L $AlCl_3$ aqueous solution as electrolytes. Electrochemical corrosion of electrodes and wire leads occurred mainly in the anodic zone. After electrochemical modification, pore morphology showed little change in distribution, decrease in total pore specific surface area and volume, and increased average pore diameter. The total pore specific surface area in the anodic zone was greater than in the cathodic zone, but total pore volume was less. Mineralogical composition was unchanged by the modification. Changes in UCS were caused by a number of factors, including corrosion, weakening by aqueous solutions, and electrochemical cementation, and electrochemical cementation stronger than corrosion and weakening by aqueous solutions.