• Title/Summary/Keyword: electrochromic devices

Search Result 55, Processing Time 0.02 seconds

Recent Research Trend in Multifunctional Wearable Energy Storage Devices (다기능성 웨어러블 에너지 저장 장치 연구동향)

  • Park, Sangbaek
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.23-39
    • /
    • 2020
  • 4차 산업혁명의 초연결/초지능 사회가 현실화 되면서 모든 제품이 배터리에 연결되는 사물배터리(battery of things) 시대가 열리고 있다. 이에 따라 기존의 정형화된 에너지 저장 장치를 넘어 전자기기 각각에 걸맞은 스펙과 기능을 갖는 맞춤형 전지 개발이 화두이다. 특히 구부러지거나 변형될 수 있는 웨어러블 전자기기를 구동하기 위해서는 기계적인 변형에 안정한 에너지 저장 장치가 필요하다. 또한 다양한 기능(투명성, 전기변색, 자가치유형, 친환경 등)을 갖는 지능형 전자기기가 개발됨에 따라, 이와 동등한 기능을 갖는 에너지 저장 장치도 요구되고 있다. 나아가 각각 개발된 웨어러블/다기능성 전자기기와 에너지 저장 장치를 어떻게 통합시킬지에 대한 연구도 활발히 이루어지고 있다. 본 기고문에서는 기계적 안정성, 기존 소자와의 적합성, 나아가 신기능성까지 갖춘 차세대 다기능성 웨어러블 에너지 저장 장치를 소개하고 이를 위한 복합나노구조 합성 및 소자 디자인 전략에 관한 최근 연구 동향을 소개하고자 한다.

PARAMETER STUDY ON PLASMA-POLYMERIZATION OF LANTHANIDE DIPHTHALOCYANINE FILMS FOR ELECTROCHEMICAL DEVICES

  • Kashiwazaki, Naoya;Yamana, Masao
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.739-744
    • /
    • 1996
  • Lanthanide diphthalocyanines have interesting properties on electrochemical and chemical redox reactions. It is however, difficult to use because of thier short device life. Plasma-polymerization attends to improvement thier device life. Yb-diphthalocyanine ($YbPc_2$) polymer film was deposited in a parallel plate electrodes-type RF plasma reactor. $YbPc_2$ was sublimed into the argon plasma, and polymer film was obtained on a substrate. Radio frequency was constant of 13.56MHz. Pressure of argon gas, sublimation rate of $YbPc_2$ and RF power were variable parameters depending on film quality. Surface of polymer films include a lot of sub-micron order lumps. It was indicated that size of lumps depends on polymerization degree controled by parameters. Size of lumps and polymerization degree are increased with RF power. However, by the high RF power over 40W, polymerization degree is decreased with RF power and surface of film is rough. In condition of RF power is high, polymerization will compete with etching of film. We obtained good films for electrochromic display with RF power of 20W, argon gas pressure of 8.0 Pa and sublimationrate of $1.2 \times 10$ mol/min, and good films for gas sensor with RF power of 30W, argon gas pressure of 10.6Pa and sublimation rate of $1.2 \times 10$ mol/min.

  • PDF

Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성)

  • Ki-Won Lee;yeong-Hun Jo;Hyo-Jin Ahn
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

A Study on the Optical Properties and Electrochromism of Amorphous $WO_3$ Thin Films (비정질 $WO_3$ 박막의 광특성 및 일렉트로크로미즘에 관한 연구)

  • Park, Seung-Hui;Jeong, Ju-Yong;Jo, Bong-Hui;Kim, Yeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.632-637
    • /
    • 1993
  • The optical properties and electrochromism of amorphous $WO_3$ thin films were studied. $WO_3$ thin films with thickness of 3000$\AA$~6000$\AA$ were deposited by vacuum evaporat.ion. All these films were transparent and found to be amorphous in structure by X-ray diffraction analysis and the visible wave length refractive indices were found to be between 1.9 and 2.1 and the optical energey gap to be 3.25 eV. Electrochromic devices were made consisting of IT0 transparent electrode, $WO_3$ thin films, $LiCIO_4$- propylene carbonate and Pt counter electrode. In terms of their operation, the amorphous $WO_3$ films were colored blue by a double injection of electrons from the transparent electrode and lithium ions from the $LiCIO_4$-propylene carbonate organic electrolyte and made colorless by electrochemical oxidation reaction. The electrochromic properties of $WO_3$ thin films including coloration and bleaching, optical density and response time were all found to be strongly dependent on the film deposition condition, electrolyte concentration, sheet resistance of the transparent electrode and applied voltage.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF