• Title/Summary/Keyword: electrochromic

Search Result 153, Processing Time 0.04 seconds

RF Sputtered $SnO_2$, Sn-Doped $In_2O_3$ and Ce-Doped $TiO_2$ Films as Transparent Counter Electrodes for Electrochromic Window

  • 김영일;윤주병;최진호;Guy Campet;Didier Camino;Josik Portier;Jean Salardenne
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.107-109
    • /
    • 1998
  • The $SnO_2$, Sn-doped $In_2O+3\; and \;Ce-doped\; TiO_2$ films have been prepared by RF sputtering method, and their opto-electrochemical properties were investigated in view of the applicability as counter electrodes in the electrochromic window system. These oxide films could reversibly intercalate $Li^+$ ions owing to the nanocrystalline texture, but remained colorless and transparent. The high transmittance of the lithiated films could be attributed to the prevalence of the $Sn^{4+}/Sn^{2+}\; and\; Ce^{4+}/Ce^{3+}$ redox couples having 5s and 6s character conduction bands, respectively. For the Ce-doped $TiO_2$ film, $(TiO_2)_{1-x}(CeO_2)_x$, an optimized electrochemical reversibility was found in the film with the composition of x = 0.1.

Self-powered Smart Window Technologies Using Photovoltaics (태양전지를 이용한 스마트 윈도우 기술 동향)

  • Lee, Kyu-Sung;Lim, Jung Wook;Kang, Mangu;Kim, Kyung Hyun;Ryu, Hojun
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.36-47
    • /
    • 2019
  • Smart window technology has become a major component of smart buildings, leading to energy savings and enhanced functionality. Smart windows work like curtains or blind screens, blocking external light sources. Smart window components employ electrochromic or photochromic materials that can selectively block sunlight when electricity is applied. The installation of low-E glass and building-integrated photovoltaics (BIPV) is being encouraged in accordance with the policy on saving building energy. To incorporate BIPV into smart windows, the transparency and colors of transparent photovoltaics must be optimized. The power sources required to operate these smart windows take advantage of the transparent color of the solar cells, which also facilitates aesthetics. Self-powered smart windows that combine electrochromic or photochromic screens with transparent solar cells suggest a promising convergent technology.

Next-Generation Multifunctional Electrochromic Devices (차세대 다기능 전기변색 소자)

  • Yun, Tae Yong;Moon, Hong Chul
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.12-22
    • /
    • 2020
  • 전기변색 물질은 전압을 인가하였을 때 산화-환원 반응을 통해 흡수도나 투과도 같은 광학적 물성 변화를 보인다. 이러한 전기변색 물질에 기반한 전기변색 소자는 높은 투과도 변화, 낮은 구동 전압, 간단한 소자 구조 등 다양한 장점을 가지고 있어 차세대 투명 디스플레이로 각광받고 있다. 최근에는 이러한 전기변색 소자에 변색 특성 이외에 유연성 및 에너지 저장성 등 다양한 기능을 추가하는 연구가 활발하게 이루어지고 있다. 본 기고문에서는 전기변색 소자의 기본적인 구동 원리 및 다기능 개발 동향 등에 대해 알아보고자 한다.

Enhanced Electrochromic Switching Performance in Nickel Hydroxide Thin Film by Ultra-Thin Ni Metal (니켈금속 박막에서 수산화 니켈 박막의 전기변색속도 개선)

  • Kim, Woo-Seong;Seong, Jeong-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.163-167
    • /
    • 2002
  • Improved optical switching property of electrochromic nickel hydroxide/nickel glass thin film is reported. Nickel metal film was deposited on glass by e-beam evaporation before following electrochemical redox cycling to form nickel hydroxide for electrochromic activation. Without ITO (indium tin oxide) layer as electrical conductor, this electrode showed more rapid coloration rate than nickel hydroxide film on ITO substrate in the change of the electric voltage and optical transmittance. XPS analysis confirmed the existence of ultra-thin nickel metal layer (${\sim}10{\AA}$) between electrochemically grown nickel hydroxide and the glass substrate. It is concluded that the remained nickel metal nano-layer attribute to the conduction layer and the enhanced response time.

  • PDF