• Title/Summary/Keyword: electrochemical parameters

Search Result 339, Processing Time 0.032 seconds

A study on the evaluation for material degradation of 0.0Cr-0.5Mo steel by a electrochemical polarization method (전기화학적 분극법에 의한 1.0Cr-0.5Mo강의 경년열화 평가에 관한 연구)

  • Na, Eui-Gyun;Kim, Hoon;Lee, Jong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.177-189
    • /
    • 1998
  • The contents of this paper include a non-destructive technique for evaluating the degradation of the boiler superheater tube in a fossil power plant through an electrochemical polarization test. Correlation between Ip of polarization parameter and SP-DBTT for the superheater tubes in long-term use was obtained. 1.0Cr-0.5Mo steel was degraded by softening, and the degree of degradation was dependent upon carbides with Cr and Mo elements. Since brittle fracture at low temperature and ductile fracture mode at high temperature were shown, similarity between standard Charpy and small punch tests could be found. In addition, SP-DBTT showing the degree of degradation was higher, as the time-in use of the materials got longer. Electrolyte including picric acid of 1.3 g in distilled water of 100ml at 25.deg. C temperature and sodium tridecylbenzene sulfonate with 1g could be applied to evaluate the degradation of 1.0Cr-0.5Mo steel by means of the electrochemical polarization test. Ip and Ipa values measured through the electrochemical test are the appropriate parameters for representing the degradation of the superheater tube(1.0Cr-0.5Mo steel) for the fossil power plant. It is poassible to evaluate the degradation of materials with different time histories electrochemically, by Ip value only, at field test.

Manufacture of magnetite (Fe3O4) electrode and its electrochemical properties (마그네타이트 (Fe3O4) 전극의 제조와 전기화학 특성)

  • Kim, Myong-Jin;Kim, Dong Jin;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Flow Accelerated Corrosion (FAC) causes unexpected accidents in a secondary side of a nuclear power plant. The secondary side pipes are mainly carbon steel tubes that have a protective magnetite ($Fe_3O_4$) layer on the inner surface. The stability of the protective magnetite layer depends on the parameters related to the FAC phenomena such as pH, temperature, flow rate, surface roughness etc. The dissolution of magnetite is basically the electrochemical reaction, but the most of the experiments of magnetite dissolution were carried out thermodynamically to determine the solubility of magnetite. The knowledge of the electrochemical properties of magnetite is required to understand the dissolution process of magnetite. This paper reviews the manufacture of the magnetite ($Fe_3O_4$) electrode, and summaries the electrochemical properties of the magnetite.

Mediated Electrochemical Oxidation of High Molecular Weight PEGs by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 고분자량 폴리에텔렌글리콜류의 매개전해산화)

  • Park, Seung-Cho;Kim, Ik-Seong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.206-211
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) of polyethylene glycols (PEGs) of molecular weight of 1000, 4000 and 20000, was carried out on both platinum (Pt) and titanium-iridium electrodes in 8.0 M nitric acid solution containing 0.5 M Fe(II) and Co(II) ion. The electrochemical parameters such as current densities, kinds of electrode, electrolyte concentration and removal efficiency were investigated in both Fe(III)/Fe(II) and Co(III)/Co(II) redox systems. The PEGs was decomposed into carbon dioxide by MEO in Fe(III)/Fe(II) and Co(III)/Co(II) redox system during 180 min and 210 min at the current density of $0.67A/cm^2$ on the Pt electrode. Removal efficiency of PEGs by MEO was better in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, indicating mediated electrochemical removal efficiency was 100%.

Electrochemical treatment of cefalexin with Sb-doped SnO2 anode: Anode characterization and parameter effects

  • Ayse, Kurt;Hande, Helvacıoglu;Taner, Yonar
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.513-525
    • /
    • 2022
  • In this study, it was aimed to evaluate direct oxidation of aqueous solution containing cefalexin antibiotic with new generation Sn/Sb/Ni: 500/8/1 anode. The fact that there is no such a study on treatment of cefalexin with these new anode made this study unique. According to the operating parameters evaluation COD graphs showed clearer results compared to TOC and CLX and thus, it was it was chosen as major parameter. Furthermore, pseudo-first degree kd values were calculated from CLX results to show more accurate and specific results. Experimental results showed that after 60 min of electrochemical oxidation, complete removal of COD and TOC was accomplished with 750 mg L-1 KCl, at pH 7, 50 mA cm-2 current density and 1 cm anode-cathode distance. Also, the stability of the Sn/Sb/Ni anode was evaluated by taking SEM and AFM images and XRD analysis before and after of electrochemical oxidation processes. According to the results, it was not occurred too much change on the anode surface even after 300 h of electrolysis. Thus, it was thought that the anode material was not corroded to a large extent. Furthermore, the removal efficiencies were very high for almost all the time and conditions. According to the results of the study, electrochemical oxidation with new generation Sn/Sb/Ni anodes for the removal of cefalexin antibiotic was found very successful and applicable due to require less reaction time complete mineralization and doesn't require pH adjustment step compared to other studies in literature. In future studies, different antibiotic types should be studied with this anode and maybe with real wastewaters to test applicability of the process in treatment of pharmaceutical wastewaters containing antibiotics, in a better way.

Pathogen-Imprinted Polymer Film Integrated probe/Ti3C2Tx MXenes Electrochemical Sensor for Highly Sensitive Determination of Listeria Monocytogenes

  • Xiaohua, Jiang;Zhiwen, Lv;Wenjie, Ding;Ying, Zhang;Feng, Lin
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.431-437
    • /
    • 2022
  • As one of the most hazardous and deadliest pathogens, Listeria monocytogenes (LM) posed various serious diseases to the human being, thus designing effective strategy for its detection is of great significance. In this work, by preparing Ti3C2Tx MXenes nanoribbon (Ti3C2TxR) as carrier and selecting thionine (Th) acted simultaneously as signal probe and functional monomer, a LM pathogen-imprinted polymers (PIP) integrated probe electrochemical sensor was design to monitor LM for the first time, that was carried out through the electropolymerization of Th on the Ti3C2TxR/GCE surface in the existence of LM. Upon eluting the templates from the LM imprinted cavities, the fabricated PIP/Ti3C2TxR/GCE sensor can rebound LM cells effectively. By recording the peak current of Th as the response signal, it can be weakened when LM cell was re-bound to the LM imprinted cavity on PIP/Ti3C2TxR/GCE, and the absolute values of peak current change increase with the increasement of LM concentrations. After optimizing three key parameters, a considerable low analytical limit (2 CFU mL-1) and wide linearity (10-108 CFU mL-1) for LM were achieved. In addition, the experiments demonstrated that the PIP/Ti3C2TxR sensor offers satisfactory selectivity, reproducibility and stability.

Simple and Sensitive Electrochemical Sandwich-type Immunosensing of Human Chorionic Gonadotropin based on b-cyclodextrin Functionalized Graphene

  • Linfen Xu;Ling liu;Xiaoyan Zhao;Jinyu Lin;Shaohan Xu;Jinlian He;Debin Jiang;Yong Xia
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • The effective detection of human chorionic gonadotropin (HCG) is considerably important for the clinical diagnosis of both of early pregnancy and nonpregnancy-related diseases. In this work, a simple and sensitive electrochemical sandwich-type immunosensing platform was designed by synthesizing b-cyclodextrin (CD) functionalized graphene (CD/GN) hybrid as simultaneously sensing platform and signal transducer coupled with rhodamine b (RhB) as probe. In brief, GN offers large surface area and high conductivity, while CD exhibits superior host-guest recognition capability, thus the primary antibody (Ab1) of HCG can be bound into the cavities of CD/GN to form stable Ab1/CD/GN inclusion complex; meanwhile, the secondary antibody (Ab2) and RhB can also enter into the cavities, producing RhB/Ab2/CD/GN complex. Then, by using Ab1/CD/GN as sensing platform and RhB/Ab2/CD/GN as signal transducer (in which RhB was signal probe), a simple sandwich-type immunosensor was constructed. Under the optimum parameters, the designed immunosensor exhibited a considerable low analytical detection of 1.0 pg mL-1 and a wide linearity of 0.002 to 10.0 ng mL-1 for HCG, revealing the developed sandwich-type electrochemical immunosensing platform offered potential real applications for the determination of HCG.

Electrochemical Study of Molecular Devices Using Functional LB Monomolecular Layer Compounds (신기능성 LB 단분자막을 이용한 분자소자의 전기화학적 연구)

  • Park, Soo-Gil
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.311-329
    • /
    • 1991
  • Electrochemical behavior of surface active Osmium bipyridine complex adsorbed in a monomolecular layer on tin oxide electrodes by the Langmuir-Blodgett method was studied. Theoretical equation of cyclic voltammetry of electrode reactions for redox species adsorbed as monolayer form was discussed by reversible and quasi-reversible waves. The film was transferred onto the $SnO_2$ electrode surface and then amounts of charge on the electrode were measured in the technique of cyclic voltammetry. The electron transfer mediation of these monolayer with $Fe^{2+}$, TEMPOL and others were studied. And the cyclic voltammetry were simulated by taking into account the interaction parameters. From these values, we found it possible to fit almost all measured cyclic voltammograms with these parameters. The recent works and directions using LB method were introduced with various applicable field.

  • PDF

Novel State-of-Charge Estimation Method for Lithium Polymer Batteries Using Electrochemical Impedance Spectroscopy

  • Lee, Jong-Hak;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.237-243
    • /
    • 2011
  • Lithium batteries are widely used in mobile electronic devices due to their higher voltage and energy density, lighter weight and longer life cycle when compared to other secondary batteries. In particular, a high demand for lithium batteries is expected for electric cars. In the case of the lithium batteries used in electric cars, driving distance must be calculated accurately and discharging should not be done below a level that makes it impossible to crank. Therefore, accurate information on the state-of-charge (SOC) becomes an essential element for reliable driving. In this paper, a novel method for estimating the SOC of lithium polymer batteries using AC impedance is proposed. In the proposed method, the parameters are extracted by fitting the measured impedance spectrum on an equivalent impedance model and the variation in the parameter values at each SOC is used to estimate the SOC. Also to shorten the long length of time required for the measurement of the impedance spectrum, a novel method is proposed that can extract the equivalent impedance model parameters of lithium polymer batteries with the impedance measured at only two specific frequencies. Experiments are conducted on lithium polymer batteries, with similar capacities, made by different manufacturers to prove the validity of the proposed method.

PARAMETER STUDY ON PLASMA-POLYMERIZATION OF LANTHANIDE DIPHTHALOCYANINE FILMS FOR ELECTROCHEMICAL DEVICES

  • Kashiwazaki, Naoya;Yamana, Masao
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.739-744
    • /
    • 1996
  • Lanthanide diphthalocyanines have interesting properties on electrochemical and chemical redox reactions. It is however, difficult to use because of thier short device life. Plasma-polymerization attends to improvement thier device life. Yb-diphthalocyanine ($YbPc_2$) polymer film was deposited in a parallel plate electrodes-type RF plasma reactor. $YbPc_2$ was sublimed into the argon plasma, and polymer film was obtained on a substrate. Radio frequency was constant of 13.56MHz. Pressure of argon gas, sublimation rate of $YbPc_2$ and RF power were variable parameters depending on film quality. Surface of polymer films include a lot of sub-micron order lumps. It was indicated that size of lumps depends on polymerization degree controled by parameters. Size of lumps and polymerization degree are increased with RF power. However, by the high RF power over 40W, polymerization degree is decreased with RF power and surface of film is rough. In condition of RF power is high, polymerization will compete with etching of film. We obtained good films for electrochromic display with RF power of 20W, argon gas pressure of 8.0 Pa and sublimationrate of $1.2 \times 10$ mol/min, and good films for gas sensor with RF power of 30W, argon gas pressure of 10.6Pa and sublimation rate of $1.2 \times 10$ mol/min.

  • PDF

An Evaluation of Aging Degradation Damage for Cr-Mo-V Steel by Electrochemical Potentiokinetic Reactivation Test (재활성화 분극시험에 의한 Cr-Mo-V강의 시효열화 손상 평가)

  • Kwon, Il-Hyun;Na, Sung-Hun;Song, Gee-Wook;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Cr-Mo-V steel is widely used as a material for the turbine structural component in fossil power plants. It is well known that this material shows the various material degradation phenomenons such as temper embrittlement, carbide coarsening. and softening etc. or ins to the severe operation conditions as high temperature and high pressure. These deteriorative factors cause tile change of mechanical properties as reduction of fracture toughness. Therefor it is necessary to evaluate tile extent of degradation damage for Cr-Mo-V steel in life assessment of turbine structural components. In this paper. the electrochemical potentiokinetic reactivation(EPR) test in $50wt%-Ca(NO_3)_2$ solution is performed to develop the newly technique for degradation damage evaluation of Cr-Mo-V steel. The results obtained from the EPR test are compared with those in small punch(SP) tests recommended by semi-nondestructive testing method using miniaturized specimen. The evaluation parameters used in EPR test are tile reactivation current density$(I_R)$ and charge$(Q_{RC})$ reactivation rate$(I_R/I_{Crit},\;Q_R/Q_{Crit})$. The results suggest that $I_R/I_{Crit}$ in these parameters shows a good correlation with SP test results.

  • PDF