• Title/Summary/Keyword: electrochemical hydrogen charging

Search Result 30, Processing Time 0.024 seconds

Electrode Fabrication and Electrochemical Characterization of a Sealed Ni-MH Battery for Industrial Use (산업용 밀폐형 니켈수소전지의 전극 제조 및 전기화학적 특성)

  • An, Yang-Im;Kim, Sae-Hwan;Jo, Jin-Hun;Kim, Ho-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.289-296
    • /
    • 2008
  • Electrochemical studies were performed by a half-cell test for the nickel hydroxide (cathode) and hydrogen storage alloy(anode) electrodes for the sealed Ni-MH batteries applicable to industrial use. The electrodes were fabricated and checked a charge efficiency and an internal pressure of the battery during charge-discharge cycling. In order to reduce the internal pressure of the sealed Ni-MH battery, cyclic voltammetry (CV) were performed on the electrodes of nickel hydroxide(cathode) and hydrogen storage alloy(anode), respectively. The results of the test showed clearly the oxidation/reduction and oxygen evolution reaction in a nickel hydroxide electrode and the hydrogenation behavior of a hydrogen storage electrode. The sealed Ni-MH battery of 130Ah was fabricated by using nickel hydroxide of a high over-voltage for an oxygen gas evolution and hydrogen storage alloy of a good performance for activation The battery showed a good characteristics such as a high charge efficiency of 98% at 1 C charge current, a low level internal pressure of 4 atm on a continuous over-charging and a large preservation capacity of 95% at 400 cycle.

Mechanistic Studies on the Hydrogen Evolution and Permeation of Ultra-Strong Automotive Steel in Neutral Chloride Environments (중성의 염화물 환경 내 자동차용 초고강도강의 부식반응에 기인한 수소원자의 발생 및 투과 메커니즘)

  • Hwang, Eun Hye;Ryu, Seung Min;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.428-434
    • /
    • 2018
  • Hydrogen evolution on a steel surface and subsequent hydrogen diffusion into the steel matrix are evaluated using an electrochemical permeation test with no applied cathodic current on the hydrogen charging side. In particular, cyclic operation in the permeation test is also conducted to clarify the corrosion-induced hydrogen evolution behavior. In contrast to the conventional perception that the cathodic reduction reaction on the steel in neutral aqueous environments is an oxygen reduction reaction, this study demonstrates that atomic hydrogen may be generated on the steel surface by the corrosion reaction, even in a neutral environment. Although a much lower permeation current density and significant slower diffusion kinetics of hydrogen are observed compared to the results measured in acidic environments, they contribute to the increase in the embrittlement index. This study suggests that the research on hydrogen embrittlement in ultra-strong steels should be approached from the viewpoint of corrosion reactions on the steel surface and subsequent hydrogen evolution/diffusion behavior.

Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes (Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성)

  • Song, MyoungYoup;Kwon, IkHyun;Lee, DongSub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.

Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test I : Base Metal (소형펀치 시험을 이용한 API 5L X65 강의 수소취화에 관한 연구 I : 모재부)

  • Jang, Sang-Yup;Yoon, Kee-Bong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Occurrence of hydrogen embrittlement could be one of the main obstacles for using structural equipment under hydrogen environment. It is required to develop assessment methods of hydrogen embrittlement for the metals used in production, storage, transmission and application utilities of hydrogen. The most probable method of hydrogen mass transmission is using existing natural gas pipeline. Base or weld part of the pipeline can be damaged by mixed gas of hydrogen in the pipeline. In this study small punch (SP) testing was employed to evaluate the hydrogen embrittlement behavior for a line pipe steel (API X65) with electrochemically hydrogen charged specimens. Results showed that the SP test can be a good candidate test method for hydrogen damage evaluation method. Strength of steel is known to be decreased with the level of hydrogen charging. However, for API X65 steel base metal need in this study, the effect of hydrogen to strength was not significant. It can be negligible regardless of the hydrogen contents in the steel. With this test different strength levels with various hydrogen charging conditions were observed. It can also be anticipated that more sensitive evaluation of material behavior be obtainable by the SP test method.

A study on the activation characteristics of multi-phase Zr-based hydrogen storage alloy for Ni-MH rechargeable battery (Ni-MH 2차전지용 다상의 Zr계 수소저장합금 전극의 활성화 특성에 관한 연구)

  • Lee, Ho;Jang, Kuk-Jin;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.4
    • /
    • pp.161-171
    • /
    • 1997
  • $AB_2$ type Zr-based Laves phase alloys have been studied for potential application as negative electrode in Ni/MH batteries. However, They have a serious disadvantage of poor activation behavior in KOH solution. In this work, a new method of alloy design method was tried for improving Zr-based alloy activation. this method has focused on phase controlling to make multi-phase microstructure. In the case of multi-phase Zr-V-Mn-Ni shows good performance in activation, but activation mechanism has not been known. So, we were in search of elucidating this mechanism, Using morphological and electrochemical analysis, we could find that surface morphology and electocatalytic activity of the alloy change during immersion in KOH solution. V-rich second phases are selectively corroded and dissolved and then become Ni-rich phases. Resulting from these surface reaction in KOH solution, self-hydrogen charging occurs through Ni-rich phase. However, the alloy has poor cyclic durability because of such a corrosion mechanism. Therefore, finally we developed durable alloys by substitution of other alloying element.

  • PDF

Influence of Specimen Geometry and Notch on Hydrogen Embrittlement Resistance of SA372 Steel for Pressure Vessel (압력용기용 SA372강의 수소취성 저항성에 미치는 시편 형태의 영향)

  • Hee-Chang Shin;Sang-Gyu Kim;Jae-Yun Kim;Byoungchul Hwang
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.302-308
    • /
    • 2023
  • The influence of specimen geometry and notch on the hydrogen embrittlement of an SA372 steel for pressure vessels was investigated in this study. A slow strain-rate tensile (SSRT) test after the electrochemical hydrogen charging method was conducted on four types of tensile specimens with different directions, shapes (plate, round), and notches. The plate-type specimen showed a significant decrease in hydrogen embrittlement resistance owing to its large surface-to-volume ratio, compared to the round-type specimen. It is well established that most of the hydrogen distributes over the specimen surface when it is electrochemically charged. For the round-type specimens, the notched specimen showed increased hydrogen susceptibility compared with the unnotched one. A notch causes stress concentration and thus generates lots of dislocations in the locally deformed regions during the SSRT test. The solute hydrogen weakens the interactions between these dislocations by promoting the shielding effect of stress fields, which is called hydrogen-enhanced localized plasticity mechanisms. These results provide crucial insights into the relationship between specimen geometry and hydrogen embrittlement resistance.

Effect of Cr and Mo Contents on Hydrogen Embrittlement of Tempered Martensitic Steels (템퍼드 마르텐사이트강의 수소취성에 미치는 Cr 및 Mo 함량의 영향)

  • Sang-Gyu, Kim;Jae-Yun, Kim;Hee-Chang, Sin;Byoungchul, Hwang
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.466-473
    • /
    • 2022
  • The effect of Cr and Mo contents on the hydrogen embrittlement of tempered martensitic steels was investigated in this study. After the steels with different Cr and Mo contents were austenitized at 820 ℃ for 90 min, they were tempered at 630 ℃ for 120 min. The steels were composed of fully tempered martensite with a lath-type microstructure, but the characteristics of the carbides were dependent on the Cr and Mo contents. As the Cr and Mo contents increased, the volume fraction of film-like cementite and prior austenite grain size decreased. After hydrogen was introduced into tensile specimens by electrochemical charging, a slow strain-rate test (SSRT) was conducted to investigate hydrogen embrittlement behavior. The SSRT results revealed that the steel with lower Cr or lower Mo content showed relatively poor hydrogen embrittlement resistance. The hydrogen embrittlement resistance of the tempered martensitic steels increased with increasing Mo content, because the reduction in the film-like cementite and prior austenite grain size plays an important role in improving hydrogen embrittlement resistance. The results indicate that controlling the Cr and Mo contents is essential to achieving a tempered martensitic steel with a combination of high strength and excellent hydrogen embrittlement resistance.

Interaction of Mechanics and Electrochemistry for Magnesium Alloys

  • Han, En-Hou;Wang, JianQiu;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.243-251
    • /
    • 2008
  • Magnesium alloys become popular research topic in last decade due to its light weight and relatively high strength-to-weight ratio in the energy aspiration age. Almost all structure materials are supposed to suspend stress. Magnesium is quite sensitive to corrosive environment, and also sensitive to environmental assisted cracking. However, so far we have the limited knowledge about the environmental sensitive cracking of magnesium alloys. The corrosion fatigue (CF) test was conducted. Many factors' effects, like grain size, texture, heat treatment, loading frequency, stress ratio, strain rate, chemical composition of environment, pH value, relative humidity were investigated. The results showed that all these factors had obvious influence on the crack initiation and propagation. Especially the dependence of CF life on pH value and frequency is quite different to the other traditional structural metallic materials. In order to interpret the results, the electrochemistry tests by polarization dynamic curve and electrochemical impedance spectroscopy were conducted with and without stress. The corrosion of magnesium alloys was also studied by in-situ observation in environmental scanning electron microscopy (ESEM). The corrosion rate changed with the wetting time during the initial corrosion process. The pre-charging of hydrogen caused crack initiated at $\beta$ phase, and with the increase of wetting time the crack propagated, implying that hydrogen produced by corrosion reaction participated in the process.

Development of Activated Graphite Felt Electrode Using Ozone and Ammonia Consecutive Post Treatments for Vanadium Redox Flow Batteries (오존, 암모니아 순차적 처리를 통한 바나듐 레독스 흐름 전지용 활성화 카본 펠트 전극 개발)

  • CHOI, HANSOL;KIM, HANSUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • A carbon felt electrode was prepared using ozone and ammonia sequential treatment and applied as an electrode for a vanadium redox flow battery (VRFB). The physical and electrochemical analyses demonstrate that the oxygen groups facilitate nitrogen doping in the carbon felt. Carbon felt (J5O3+NH3), which was subjected to ammonia heat treatment after ozone treatment, showed higher oxygen and nitrogen contents than carbon felt (J5NH3+O3), which was subjected to ammonia heat treatment first and then ozone treatment. From the charging/discharging of VRFB, the J5O3+NH3 carbon felt electrode showed 14.4 Ah/L discharge capacity at a current density of 150 mA /cm2, which was 15% and 33% higher than that of J5NH3+O3 and non-activated carbon felt (J5), respectively. These results show that ozone and ammonia sequential treatment is an effective carbon felt activation method to increase the performance of the vanadium redox flow battery.

Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 이온교환막의 수명 예측)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.