• Title/Summary/Keyword: electrochemical energy

Search Result 1,810, Processing Time 0.04 seconds

Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis (PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조)

  • Lee, Hyuck-Jae;Jung, Yun-Kyo;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.

Recent R&D Trends of Solid Oxide Fuel Cell Power Generation System (고체산화물 연료전지 발전시스템의 최근 연구 개발 동향)

  • Pyo, Seong-Soo;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.119-130
    • /
    • 2009
  • This article reviews recent R&D trends in SOFC development with an emphasis on industries that can produce the SOFC stack and power generation system. SOFC is an electrochemical device that can convert the chemical energy of fuel into the electrical energy with environment friendly system and high efficiency. SOFC power generation system could be classified as the portable power generation system, auxiliary power unit(APU), residential power generation(RPG) and large size distributed power generation. In the case of more than 10kW system, the major R&D trends are focused on the tubular type SOFC system with high efficient and long term stability to meet the commercialization of SOFC power generation system.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

A Study on the Electrochemical and Thermodynamic Properties of Hydrogen Absorbing Alloys (수소저장합금의 전기화학 및 열역학적 특성에 관한 연구)

  • Park, Chan-Kyo;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.65-71
    • /
    • 1994
  • Electrochemical and thermodynamic properties of $MmNi_5$ and the related alloys for nickel-metal hydride battery(Ni-MH) were studied in terms of the equilibrium hydrogen pressure. $MmNi_5$ alloy with high equilibrium hydrogen pressure(10~20atm at room temperature), which is usually difficult to charge, was substituted for Al in part. Partial substitution of Al made not only the equilibrium pressure to be reduced remarkably, but also the enthalpy change depending on the formation of metal hydride to be agreed to the value in gas phase reaction and electrochemical reaction. Besides the composition of Al which can be given the maximum discharge capacity was turned out to be between the 0.5~1.0 atoms of Al.

  • PDF

Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries

  • Kim, Hyung-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.571-575
    • /
    • 2011
  • Graphite-based electrodes were prepared using synthetic graphite (MCMB 1028) or natural graphite (NG) powder using a dimensionally stable anode (DSA) as a substrate. Their electrochemical properties were investigated in vanadiumbased electrolytes to determine how to increase the durability and improve the energy efficiency of redox flow batteries. Cyclic voltammetry (CV) was performed in the voltage range of -0.7 V to 1.6 V vs. SCE at various scan rates to analyze the vanadium redox reaction. The graphite-based electrodes showed a fast redox reaction and good reversibility in a highly concentrated acidic electrolyte. The increased electrochemical activity of the NG-based electrode for the $V^{4+}/V^{5+}$ redox reaction can be attributed to the increased surface concentration of functional groups from the addition of conductive material that served as a catalyst. Therefore, it is expected that this electrode can be used to increase the power density and energy density of redox flow batteries.

Three-dimensional Graphene Aerogels for Electrochemical Energy Storage

  • Yun, Sol;Park, Ho Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.485.1-485.1
    • /
    • 2014
  • In this research, we report the synthesis of three-dimensional (3D) hierarchical porous graphene aerogels (hpGAs) for application to electrochemical energy storage. For electrochemical systems, the specific capacitance is a key parameter to evaluate the characteristics of electrode materials. By taking full advantage of large surface area, 3D hpGAs would achieve the larger specific capacitance over rGO film and GAs. Microscopic structures and topologies of hpGAs were investigated using field emission scanning electron microscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was used to determine the chemical compositions of rGO film, GAs, and hpGAs. Raman spectra were recorded from 100 to 2500 cm-1 at room temperature using a Raman spectroscopy equipped with a ${\times}100$ objective was used. The specific area and pore distribution of GAs and hpGAs were obtained using a Brunauer-Emmett-Teller apparatus.

  • PDF