• 제목/요약/키워드: electrochemical double-layer capacitors

검색결과 47건 처리시간 0.025초

수열 합성법을 이용한 구형 탄소의 제조 및 특성 평가 (Fabrication of Carbon Spheres by hydrothermal synthesis and evaluation of characteristics)

  • Lee, Eun-Jung;Park, Soo-Gil;KIM, Han-Ju;Kim, Hong-il
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.165-166
    • /
    • 2014
  • The electric double-layer capacitors (EDLCs) are consisted of electrodes, electrolyte and separator. Among of them, electrode materials are generally used carbon materials. In this study, we experimented for the purpose of fabrication of carbon spheres from various carbohydrates as electrode material. Carbon spheres were prepared by hydrothermal synthesis process. Carbon spheres' morphology had been examined using scanning electron microscopy (SEM) and specific surface area had been examined using BET analysis. To confirm the possibilities of carbon spheres as EDLC's electrode materials, we conducted electrochemical tests such as cyclic voltammetry (CV), impedance and cycle ability.

  • PDF

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min;Kim, Hong-Gun;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2014
  • Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.

활성탄소 전극의 제조방식에 따른 EDLC 특성비교 (Comparison of Electrochemical Properties of EDLCs using Activated Carbon Electrodes Fabricated with Various Binders)

  • 양선혜;전민제;김익준;문성인;김현수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.353-354
    • /
    • 2006
  • This work describes the effect of binders, such as carboxymethylcellulose (CMC), CMC+Polytetrafluoroethylene (PTFE) and PTFE, on the electrochemical and mechanical properties of activated carbon-electrode for electric double layer capacitor. The cell capacitors using the electrode bound with binary binder composed of CMC and PTFE, especially m composition CMC ; PTFE = 60 : 40 wt %, has exhibited the better rate capability and the lower internal resistance than those of the cell capacitor with CMC. On the other hand, the sheet type electrode kneaded with PTFE was bonded with conductive adhesive on Al foil. This cell capacitor using the electrode with PTFE exhibited the best mechanical properties and rate capability compared to the CMC and CMC+PTFE one These behaviors could be explained by the well-developed network structure of PTFE fibrils during the kneading process.

  • PDF

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF

커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용 (Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application)

  • 김동현;김민상;제갈석;김지원;김하영;추연룡;김찬교;심형섭;윤창민
    • 유기물자원화
    • /
    • 제31권1호
    • /
    • pp.57-68
    • /
    • 2023
  • 본 연구에서는 커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유 형태로 제조하여 고에너지 EDLC용 탄소 소재로 활용하고자 하였다. 커피 폐기물은 분쇄과정을 거쳐 폴리비닐피롤리돈과 용매인 다이메틸폼아마이드에 혼합한 후 전기방사를 통해 커피 폐기물 기반의 섬유 형태(Bare-CWNF)의 물질로 만들었으며, 질소 분위기의 900℃에서 탄화를 진행하여 커피 폐기물 기반의 질소가 포함된 다공성 섬유 형태(Carbonized-CWNF)의 물질을 제조하였다. Carbonized-CWNF는 Bare-CWNF와 같이 섬유 형태를 유지하였으며 질소 함량 역시 유지되는 것을 확인하였다. 커피 폐기물의 탄화 탄소(Carbonized-CW)및 폴리아크릴로나이트릴 기반의 탄소섬유(Carbonized-PNF)를 Carbonized-CWNF와 -1.0-0.0V의 전압 범위에서 전기화학적 성능을 비교한 결과, Carbonized-CWNF가 가장 높은 비정전용량(123.8F g-1 @ 1A g-1)을 확보할 수 있었다. 이를 통해 커피 폐기물 기반의 질소가 함유된 다공성 탄소 섬유가 고에너지 EDLC(Electric double layer capacitor)용 전극으로 우수한 성능을 나타내는 것을 확인하였다. 최종적으로, 환경 오염의 원인이 되는 식물성 바이오매스 중 커피 폐기물을 활용하여 친환경성을 확보하였고, 식물성 바이오매스와 같은 폐기물을 슈퍼커패시터와 같은 고성능 에너지 저장 매체로의 탈바꿈 할 수 있는 가능성을 제시하였다.

정전방사에 의한 PAN계 활성화 탄소 나노섬유 전극 제조와 EDLC 응용 (Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC)

  • 김찬;김종상;이완진;김형섭;;양갑승
    • 전기화학회지
    • /
    • 제5권3호
    • /
    • pp.117-124
    • /
    • 2002
  • PAN(polyacrylonitrile)을 DMF(dimethylformamide) 용매에 용해하여 정전방사법에 의해 평균 직경 400 nm의 나노섬유 웹을 제조하였다. 제조된 나노섬유 웹은 산화 안정화, 활성화 공정을 거쳐 활성화 탄소 나노섬유를 제조하여, 전기화학적 특성과 비축전 용량을 측73하였다. 활성화 탄소 나노섬유의 비표면적은 $1230m^2/g-800m^2/g$으로 일반 활성탄소 섬유의 거동과는 다르게 활성화 온도가 증가할수록 감소하는 경향을 나타냈으며, 활성화 에너지 값은 29.2kJ/mol로 활성화 온도에 크게 영향을 받지 않고, 급격한 반응이 일어남을 알 수 있었다. 비축전 용량은 활성화 온도가 $700^{\circ}C,\;750^{\circ}C,\;800^{\circ}C$의 경우 27 F/g, 25 F/g, 22 F/g으로 활성화 온도가 증가할수록 비표면적에 비례하여 낮아지는 경향을 나타냈다.

Performance of Electric Double Layers Capacitor Using Activated Carbon Materials from Rice Husk as Electrodes

  • Nguyen, Tuan Dung;Ryu, Jae Kyung;Bramhe, Sachin N.;Kim, Taik-Nam
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.643-648
    • /
    • 2013
  • Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + $Na_2CO_3$), and a combination of (KOH + $K_2CO_3$) as the chemical activating reagents. The activated carbon with the highest surface area (around $2000m^2/g$) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.