• Title/Summary/Keyword: electrochemical conversion

Search Result 254, Processing Time 0.024 seconds

결함 제어를 통한 금속산화물 소재의 전기화학 특성 제어

  • Jeong, Hyeong-Mo;Sin, Won-Ho
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • Metal oxide based materials have been widely used to fields of electrochemical applications. Recently, various type of defects from microstructures of metal oxides and their nanocomposites have been raised as the important material design factors for realizing highly improved electrochemical properties. Previous experimental and theoretical works have suggested that controlling the reaction activity and kinetics of the key electrochemical reactions by activated interfaces originating from the defect sites can play an important role in achieving the robust energy storage and conversion. Therefore, this paper focuses on the role of defect-controlled metal oxide materials such as doping, edge-sites, grain boundaries and nano-sized pores for the high performances in energy storage devices and electrocatalysts. The research approaches demonstrated here could offer a possible route to obtain noble ideas for designing the metal oxide materials for the energy storage and conversion applications.

Effect of Carbon Content of Sulfur Electrode on the Electrochemical Properties of Lithium/Sulfur Battery Using PEO Electrolyte (유황전극의 탄소량 변화에 따른 리튬/유황 전지의 방전특성 변화)

  • Kang, K.Y.;Ryu, H.S.;Kim, J.S.;Kim, K.W.;Ahn, J.H.;Lee, G.H.;Ahn, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.317-323
    • /
    • 2006
  • Electric conductive material should be homogeneously mixed with sulfur in sulfur electrode fabrication of lithium/sulfur battery, because sulfur is electric insulator. In this paper electrochemical properties of Li/S battery was studied with various compositions of sulfur electrodes. When content of sulfur changed from 40 wt.% to 80 wt.%, the 60 wt.% sulfur electrode showed the maximum capacity of 1489 mAh/g-sulfur. Electrochemical properties of Li/S battery using 60 wt.% sulfur was also investigated with various carbon contents. The discharge capacity changed as a function of carbon contents. The optimum composition was 25 wt.% carbon for 60 wt.% sulfur electrode.

Experimental Investigation on High Efficient Electrolytes of Electrochemical Photovoltaic Cells (전기화학형 광전변환 셀의 고효율 전해질 제작에 관한 실험적 고찰)

  • Kim, Doo-Hwan;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • In this work, an optimum condition of electrolytes preparation for photovoltaic cells application was investigated experimentally in terms of impedance and conversion efficiency of the cells. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as stable solvents for fabrication of electrolyte. Efficiency comparison of the prepared cells carried out for various additives and ionic liquids. From the results, there was an optimum concentration (about 0.3 M) of ionic liquids for efficient cell fabrication. For case of electrolyte using single DMAp additive, the maximum conversion efficiency of the cell was 6.4%($V_{oc}$: 0.78V, $J_{sc}$: 14.4 mA/$cm^2$, ff: 0.57). For case of electrolyte using both DMAp and CEMim additives, the maximum conversion efficiency of the cell was 7.2%($V_{oc}$: 0.79V, $J_{sc}$: 16 mA/$cm^2$, ff: 0.57). From the result of electrochemical impedance measurement, both Z1 and Z3 values of binary additives-based cell decreased compared to those of single additive-based. This is due to the decreased in internal and charge transfer resistivities of the cells.

Effect of Fe(NO3)2 Concentration on Electrochemical Behavior of SCM430 in Zinc Phosphate Conversion Coating Solution (아연계 인산염 피막용액에서 Fe(NO3)2 농도가 SCM430 합금의 전기화학적 거동에 미치는 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.233-238
    • /
    • 2019
  • The formation behavior of zinc phosphate conversion coating (ZPCC) on SCM430 alloy was investigated in 25 vol.% of 1M ZnO + 170 ml/L solution containing various $Fe(NO_3)_2$ concentrations, using open-circuit potential(OCP), electrochemical impedance spectroscopy(EIS), cyclic polarization(CP) curve and tape peel test. OCP of SCM430 alloy and corrosion current density increased with increasing $Fe(NO_3)_3$ concentration. Resistance of films formed on SCM430 alloy by chemical conversion treatment decreased with increasing $Fe(NO_3)_3$ concentration. Color and adhesion of chemical conversion coatings became darker and worse, respectively, with increasing $Fe(NO_3)_3$ concentration. It is concluded that addition of $Fe(NO_3)_3$ into a zinc phosphating bath leads to faster reaction to form porous surface coatings with poor adhesion and corrosion resistance.

Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries

  • Kim, Hyunwoo;Kim, Dong In;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.32-53
    • /
    • 2022
  • Although lithium-ion batteries are currently the most reliable power supply system for various mobile applications, further improvement in energy density is still required as the need for batteries in large energy-consuming devices is rapidly growing. However, in the anode, the most widely commercialized graphite-based anode materials almost face theoretical limitations. In addition, sodium-ion batteries have been actively studied to replace expensive charge carriers with cheaper ones. Accordingly, conversion-based materials have been extensively studied as high-capacity anode materials in both lithiumion batteries and sodium-ion batteries because their theoretical capacity is twice or thrice higher than that of insertion-based materials. This review will provide a comprehensive understanding of conversion-based materials, including basic charge storage behaviors, critical drawbacks that should be overcome, and practical material design for high-performance.

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

High Performance of Nano-sized LiFePO4 Positive Electrode Using Etched Al Current Collector

  • Lee, Gil-Won;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.157-162
    • /
    • 2010
  • The electrodes comprising nano-sized $LiFePO_4$, carbon black and binder are prepared with two different Al current collectors. One is the generally used normal Al foil and the other is the chemically etched Al foil. Surface characteristics of each Al foil and electrochemical performance of the cathodes using each foil are investigated. The electrode from the etched Al foil exhibits better physical and electrochemical properties as compared to those of the normal Al foil because the etched Al foil has rough surface with sub-micron pores which improve the adhesion between the electrode materials and the substrate. The electrode on the etched Al foil has such a strong peel strength that the impedance is smaller than that of normal one. Indeed the $LiFePO_4$ electrode from the etched Al foil exhibits a better rate capability and remains intact even after storage for 1 week at the charged state at the elevated temperature $60^{\circ}C$.

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds in a Neutral Salt Electrolyte

  • Park, W. K.;Y. M. Yang;C. H. Jung;H. J. Won;W. Z. Oh;Park, J. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.689-695
    • /
    • 2003
  • Electrochemical decontamination process has been applied for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds such as $UO_2$, ammonium uranyl carbonate (AUC), ammonium di-uranate (ADU), and uranyl nitrate(UN) with tributylphosphate(TBP) and dodecane, which are generated by dismantling the contaminated system components and equipment of a retired uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). Electrochemical decontamination for metallic wastes contaminated with uranium compounds was evaluated through the experiments on the electrolytic dissolution of stainless steel as the material of the system components in neutral salt electrolytes. The effects of type of neutral salt as the electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. Decontamination performance tests using the specimens taken from a uranium conversion plant were quite successful with the application electrochemical decontamination conditions obtained through the basic studies on the electrolytic dissolution of structural material of the system components.

  • PDF

Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide (안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구)

  • Lee, Kug-Seung;Park, Hee-Young;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Electrocatalytic activities and stabilities of Pt supported on Sb-doped $SnO_2$ (ATO) were examined for ethanol oxidation reactions. Pt colloidal particles were deposited on ATO nanoparticles (Pt/ATO) and the prepared electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), and cyclic voltammetry. Electrochemical activity of the Pt/ATO for ethanol electro-oxidation was compared to those of Pt supported on carbon (Pt/C) and commercial PtRu/C. The activitiy of the Pt/ATO was much higher than those of the Pt/C and commercial PtRu/C. The Pt/ATO exhibited much higher electrochemical stabilities than the Pt/C in 0.5M ${H_2}{SO_4}$ and in 0.5M ${H_2}{SO_4}$/1M ${C_2}{H_5}OH$. According to TEM, the growth rate of Pt particles was lower in the Pt/ATO than it was in the Pt/C. The ATO nanoparticle appears to be a promising support material that promotes electrochemical reactions and stabilizes catalyst particles in direct ethanol fuel cell.

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.