• 제목/요약/키워드: electrochemical coating

검색결과 480건 처리시간 0.028초

리튬이온전지용 탄소 부극재료의 표면개질에 따른 충방전 특성 (The Effect of the Surface-modified Carbon Anode on the Electrochemical Performance in Li-ion Battery)

  • 김정식;윤휘영
    • 마이크로전자및패키징학회지
    • /
    • 제8권2호
    • /
    • pp.25-29
    • /
    • 2001
  • 본 연구에서는 mesocarbon microbeads(MCMB)카본에 에폭시 수지(resin)를 코팅시킴으로 서 카본전극 표면개질에 따른 전지 성능의 개선효과에 관하여 고찰하였다. 에폭시 수지에 의한 카본의 표면코팅은 MCMB 분말을 에폭시 수지가 용해된 THF(tetrahydrofuran)용액에 넣어 혼합함으로서 표면에 에폭시 수지가 코팅 되도록 하였다. 이렇게 에폭시 수지가 코팅된 MCMB를 $1000^{\circ}C$이상의 온도로 열처리하여 고분해능 투과전자현미경으로 관찰한 결과, 코팅층은 비정질 카본 구조를 지님을 알 수 있었다. 또한, 에폭시 수지에 의하여 코팅된 MCMB는 코팅되지 않은 MCMB보다 더 높은 BET비 표면적을 나타내었으며, 더 우수한 충방전 용량과 싸이클 특성을 나타내었다. 카본표면에 코팅된 에폭시 수지가 얇은 비정질 막으로 표면에 존재함으로서 전해질과 카본결정과의 반응을 억제시키는 방지막 역할을 하기 때문에 전지특성이 개선된 것으로 해석된다.

  • PDF

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구 (Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.411-420
    • /
    • 2020
  • Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

Investigation of Polypyrrole Coatings Containing Nanosized Metal Oxides for Corrosion Protection of AA2024 Al Alloy

  • Fekri, F.;Shahidi, M.;Foroughi, M.M.;Kazemipour, M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.148-158
    • /
    • 2019
  • The corrosion protection of AA2024 PPy coated samples doping with nanosized metal oxides, including $TiO_2$ and $CeO_2$ nanoparticles and $Nd_2O_3$ nanorods, during exposure to the solutions of 0.1 M $H_2SO_4$ and 3.5% NaCl was evaluated by electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques. The nanorods of $Nd_2O_3$ were synthesized by cathodic pulse electrochemical deposition technique. The barrier properties of the different PPy coatings containing nanosized metal oxides immersed in $H_2SO_4$ solution were ranked as follows: $Nd_2O_3$ > $TiO_2$ > $CeO_2$. Therefore, the $Nd_2O_3$ coating sample provided the highest corrosion protection at any time of immersion up to 72 hours after immersing in $H_2SO_4$ solution. On the other hand, the $CeO_2$ coating sample displayed the best anticorrosive properties among the other coating samples after immersion in NaCl solution up to 28 days. This is due to the inhibition effect of cerium ions on aluminum alloys at near-neutral solutions.

Electrochemical Performance of AlF3-Coated LiV3O8 for Aqueous Rechargeable Lithium Ion Batteries

  • Tron, Artur;Kang, Hyunchul;Kim, Jinho;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권1호
    • /
    • pp.60-68
    • /
    • 2018
  • In aqueous rechargeable lithium ion batteries, $LiV_3O_8$ exhibits obviously enhanced electrochemical performance after $AlF_3$ surface modification owing to improved surface stability to fragile aqueous electrolyte. The cycle life of $LiV_3O_8$ is significantly enhanced by the presence of an $AlF_3$ coating at an optimal content of 1 wt.%. The results of powder X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and galvanostatic charge-discharge measurements confirm that the electrochemical improvement can be attributed mainly to the presence of $AlF_3$ on the surface of $LiV_3O_8$. Furthermore, the $AlF_3$ coating significantly reduces vanadium ion dissolution and surface failure by stabilizing the surface of the $LiV_3O_8$ in an aqueous electrolyte solution. The results suggest that the $AlF_3$ coating can prevent the formation of unfavorable side reaction components and facilitate lithium ion diffusion, leading to reduced surface resistance and improved surface stability compared to bare $LiV_3O_8$ and affording enhanced electrochemical performance in aqueous electrolyte solutions.

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu;Kim, Jeong-Tae;Kennedy, Ssendagire;Ravi, Muchakayala;Lee, Yong Min;Ryou, Myung-Hyun
    • 전기화학회지
    • /
    • 제25권1호
    • /
    • pp.32-41
    • /
    • 2022
  • Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

아연 전기 도금 강의 환경친화적인 화성처리 기술 개발 (Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel)

  • 김성종;김정일;장석기
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

A Study on Corrosion Resistance Characteristics of PVD Cr-N Coated Steels by Electrochemical Method

  • Ahn, SeungHo;Yoo, JiHong;Choi, YoonSeok;Kim, JungGu;Han, JeonGun
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.289-295
    • /
    • 2003
  • The corrosion behavior of Cr-N coated steels with different phases (${\alpha}-Cr$, CrN and $Cr_2N$) deposited by cathodic arc deposition on Hl3 steel was investigated in 3.5% NaCl solution at ambient temperature. Potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were the techniques applied to characterize the corrosion behavior. It was found that the CrN coating had a lower current density from potentiodynamic polarization test than others. The porosity, corresponding to the ratio of the polarization resistance of the uncoated and the coated substrate, was higher in the $Cr_2N$ coating than in the other Cr-N coated steels. EIS measurements showed, for the most of Cr-N coated steels, that the Bode plot presented two time constants. Also, the $Cr_2N$ coating represents the characteristic of Warburg behavior after 72hr of immersion. The coating morphologies were examined in planar view and cross-section by SEM analyses and the results were compared with those of the electrochemical measurement. The CrN coating had a dense, columnar grain-sized microstructure with minor intergranular porosity. From the above results, the CrN coating provided a better corrosion protection than the other Cr-N coated steels.