• 제목/요약/키워드: electrochemical

Search Result 7,292, Processing Time 0.078 seconds

The Effect of Y Doping on Electrochemical Behavior of Spherical $Li_4Ti_5O_{12}$ for Li-ion Batteries

  • Ji, Mi-Jeong;Choe, Byeong-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.31.1-31.1
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ is emerging as a promising material with its good structure stability and little volume change during the electrochemical reaction. However, its electrochemical performance is significantly limited by low electronic or ionic conductivity. In addition, high tap density is needed forim proving its volumetric energy density and commercialization. To enhance these properties, the spherical-like $Li_4Ti_5O_{12}$ particles were synthesized and carried out doping with yttrium. Prepared Y-doped $Li_4Ti_5O_{12}$ as a anode material showed great capacity retention rate of 92% (5C/0.2C), compared with no dope done. Consequently, it was found that Y doping into $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance on SEI layer during the electrochemical reaction.

  • PDF

Microfluidic platform for voltammetric analysis of biomolecules (Microfludic 플랫폼을 이용한 생체 분자의 voltammetric 분석)

  • Chand, Rohit;Han, Da-Woon;Jha, Sandeep K.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1686-1687
    • /
    • 2011
  • A microfabricated chip with in-channel electrochemical cell using interdigitated gold electrode was fabricated for sensitive electrochemical analysis. The gold electrodes were fabricated on glass wafer using thermal evaporator and were covered using PDMS mold containing microchannel for analyte and electrolyte. The active area of each electrode was $250\;{\mu}m{\times}200\;{\mu}m$ with a gap of 200 ${\mu}m$ between the electrodes. Microelectrodes results in maximum amplification of signal, since the signal enhancement effect due to cycling of the reduced and oxidized species strongly depends on the inter electrode distance. Analytes such as methylene blue and guanosine were characterized using the fabricated electrodes and their electrochemical characteristics were compared with conventional bulk electrodes. The device so developed shall find use as disposable electrochemical cell for rapid and sensitive analysis of electroactive species.

  • PDF

Flatness of a SOB SOI Substrate Fabricated by Electrochemical Etch-stop (전기화학적 식각정지에 의해 제조된 SDB SOI기판의 평탄도)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.126-129
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential (OCP) point, the passivation potential (PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF

Improvement in Catalytic Activity of Ag Catalyst via Simple Mixing with Carbon

  • Choun, Myounghoon;Baek, Ji Yun;Eom, Taehyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.331-335
    • /
    • 2019
  • In this study we investigate catalytic activity and selectivity of mixture of Ag and ketjenblack according to their ratios by product analysis and electrochemical experiments, such as cyclic voltammetry, linear sweep voltammetry and chronoamperometry. We reveal that catalytic activity toward CO2 reduction to CO is improved by simple mixing Ag nanoparticle and ketjenblack because addition of ketjenblack suppresses aggregation of Ag nanoparticles and brings increase in electrochemical active surface area. However, excess amount of ketjenblack rather inhibit the CO2 reduction to CO. These observations provide clues to develop highly active Ag catalyst or electrode toward electrochemical reduction of CO2.

Electrochemical Analysis of Lithium-Ion Battery at Standard Temperature and Low temperature Using EVS(Electrochemical Voltage Spectroscopy) (EVS(Electrochemical Volatage Spectroscopy)기법을 이용한 리튬이온배터리의 상온과 저온에서의 전기화학적 분석)

  • Han, Dong-Ho;Kim, Jong-Hoon;Lee, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.159-160
    • /
    • 2017
  • 본 논문에서는 리튬배터리의 전기화학적 분석법으로 전기 화학적 전압 분광법(electrochemical voltage spectroscopy;EVS)을 사용하였다. 전기화학적 활성상태의 밀도를 직접 측정하는 기법으로 정전압(potentiostatic) 제어를 기반으로 한다. EVS 테스트에서 양전극의 전압은 각 단계가 전기화학적 평행상태에 도달할 때 까지 유지되며 이 방법은 배터리의 전기화학적 산화 환원 전위의 미세한 차이에 기초하여 활성 물질의 상태에 대한 정확한 정보를 얻을 수 있다.

  • PDF

Development of Reliability Design Technology about Electrochemical Migration by Metal of Electronic Components (전자부품의 금속소재에 따른 Electrochemical Migration에 대한 신뢰성 설계기술개발)

  • Lee, Shin-Bok;Jung, Ja-Young;Park, Young-Bae;Joo, Young-Chang
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1724-1729
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature/humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the Electrochemical migration

  • PDF

Micro Electrochemical Machining of Tungsten Carbide (초경합금의 미세 전해 가공)

  • Choi, Se-Hwan;Chu, Chong-Nam;Kim, Bo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.111-116
    • /
    • 2006
  • Micro machining of tungsten carbide by electrochemical machining was studied. In ECM, machining conditions and electrolyte should be chosen carefully according to the property of workpiece materials. In this paper, sulfuric acid and nitric acid were used for tungsten carbide machining and machining characteristics were investigated according to machining conditions such as electrolyte, workpiece potential and applied pulse voltage. By using mixture of sulfuric acid and nitric acid, micro structures with sharp edge and good surface quality were obtained. Micro electrochemical turning was also introduced to fabricate micro shafts.

Effect of Chemical Activation on Electrochemical behaviors of Ni-loaded Graphite Nanofibers (화학적 활성화에 따른 Ni 담지된 흑연나노섬유의 전기화학적 거동)

  • Yoo, Hye-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • In this study, we prepared the activated graphite nanofibers (A-GNFs) via chemical activation with KOH reagent. The effect of A-GNFs on the surface and textural properties of Ni-loaded graphite nanofibers (Ni/GNFs) was investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and Brunauer-Emmett-Teller (BET). The textural properties of samples were investigated by $N_2$/77K adsorption isotherms. The electrochemical performances were investigated by cyclic voltammetry. As a results, the electrochemical performances of Ni/GNFs were improved with usage of A-GNFs. This could be interpreted by the high specific surface area and large total pore volume of the A-GNFs.

  • PDF

Fabrication and Growth of Ni Nanowires by using Anodic Aluminum Oxide(AAO) Template via Electrochemical Deposition (전기화학증착법으로 양극산화 알루미늄(AAO) 템플레이트를 이용한 Ni 나노와이어의 제조 및 성장에 관한 연구)

  • Sim, Seong-Ju;Cho, Kwon-Koo;Kim, Yoo-Young
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Ni nanowires were fabricated using anodic aluminum oxide (AAO) membrane as a template by electrochemical deposition. The nanowires were formed within the walls of AAO template with 200 nm in pore diameter. After researching proper voltage and temperature for electrochemical deposition, the length of Ni nanowires was controlled by deposition time and the supply of electrolyte. The morphology and microstructure of Ni nanowires were investigated by field emission scanning electron microscope (FE-SE), X-ray diffraction (XRD) and transmission electron microscope (TEM).

Conductivity and Electrochemical characterization of Lithium ion secondary battery electrolytes (리튬이온 2차 전지용 전해액의 이온전도도와 전기화학적 특성)

  • 임동규;이제혁;변문기;조봉희;김영호;우병원;나두찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.295-298
    • /
    • 1998
  • We have investigated ionic conductivity and electrochemical stability of the electrolytes containing organic solvent. Ion conductivities were measured between 10 and 80$^{\circ}C$, and electrochemical stabilities were determined by cyclic voltammetry on glassy carbon, platinum and aluminum electrodes. Ionic conductivity of electrolyte(EC:DEC=1:1) with IM LiPF$\_$6/ shows better than that of the other electrolytes having Li salts. The IM LiBF$_4$-PC electrolyte exhibits good electrochemical stability. IM LiPF$\_$6/ (EC:DEC=1:1) and IM LiPF$\_$6/ (EC:DMC=1:1) electrolytes are used for the high capacity of battery system.

  • PDF