• Title/Summary/Keyword: electro-optical (EO) observation

Search Result 2, Processing Time 0.016 seconds

Design of an Elliptical Orbit for High-Resolution Optical Observation at a Very Low Altitude over the Korean Peninsula

  • Dongwoo Kim;Taejin Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.35-44
    • /
    • 2023
  • Surveillance and reconnaissance intelligence in the space domain will become increasingly important in future battlefield environments. Moreover, to assimilate the military provocations and trends of hostile countries, imagery intelligence of the highest possible resolution is required. There are many methods for improving the resolution of optical satellites when observing the ground, such as designing satellite optical systems with a larger diameter and lowering the operating altitude. In this paper, we propose a method for improving ground observation resolution by using an optical system for a previously designed low orbit satellite and lowering the operating altitude of the satellite. When the altitude of a satellite is reduced in a circular orbit, a large amount of thrust fuel is required to maintain altitude because the satellite's altitude can decrease rapidly due to atmospheric drag. However, by using the critical inclination, which can fix the position of the perigee in an elliptical orbit to the observation area, the operating altitude of the satellite can be reduced using less fuel compared to a circular orbit. This method makes it possible to obtain a similar observational resolution of a medium-sized satellite with the same weight and volume as a small satellite. In addition, this method has the advantage of reducing development and launch costs to that of a small-sized satellite. As a result, we designed an elliptical orbit. The perigee of the orbit is 300 km, the apogee is 8,366.52 km, and the critical inclination is 116.56°. This orbit remains at its lowest altitude to the Korean peninsula constantly with much less orbit maintenance fuel compared to the 300 km circular orbit.

Synthesis and Properties of the New Photorefractive Material (새로운 광굴절재료의 제작 및 특성)

  • Min, Wan Ki;Kim, Nam Oh;Sasabe, Hiroyuki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.142-148
    • /
    • 2002
  • Considerable progress has been made in organic photorefractive materials, since the first observation of photorefractive phenomena from organic materials. Within recent years, a large number of organic photorefractive materials, especially amorphous materials, have been developed based on polymeric composites, fully functional polymers and the multi-functional chromophore approach. Among these organic photorefractive materials, some of them containing carbazole components as a charge transporting function have been demonstrated to exhibit high performance photorefractive effects. The carbazole building blocks with charge transporting function or multifunctions play a very important role in photorefraction. In this paper, it confirmed that acceptor-substituted carbazoles show the multifunctionality both of photoconductivity and electro-optic(EO) activity and photorefractive materials newly can be developed with acceptor-substituted carbazoles.