• Title/Summary/Keyword: electro-membrane

Search Result 145, Processing Time 0.029 seconds

The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems (고분자 이온교환막의 제조와 이온교환막을 이용한 에너지 공정)

  • Kim, Jae-Hun;Ryu, Seungbo;Moon, Seung-Hyeon
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.79-96
    • /
    • 2020
  • Secondary energy conversion systems have been briskly developed owing to environmental issue and problems of fossil fuel. They are basically operated based on electro-chemical systems. In addition, ion exchange membranes are one of the significant factors to determine performance in their systems. Therefore, the ion exchange membranes in suitable conditions must be developed to improve the performance for the electro-chemical systems. These ion exchange membranes can be classified into various types such as cation exchange membrane, anion exchange membrane and bipolar membrane. Their membranes have distinct characteristics according to the chemical, physical and morphological structure. In this review, the types of ion exchange membranes and their fabrication processes are described with main characteristics. Moreover, applications of ion exchange membranes in newly developed energy conversion systems such as reverse electrodialysis, redox flow battery and water electrolysis process are described including their roles and requirements.

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

A study on the design and characteristics of an actuator for micro droplet ejecting system (미세 액적 토출 시스템의 구동기 설계 및 특성에 관한 연구)

  • Sim, Won-Chul;Kim, Young-Jae;Yoo, Young-Seuck;Joung, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2372-2373
    • /
    • 2005
  • The design of a piezoelectric actuator for micro droplet ejecting system has bee studied. The actuator has been evaluated by using commercial FEM package and its displacement are measured by LDV(Laser Doppler Vibrometer). The characteristics of the actuator are evaluated with varation in a ratio of width of PZT to that of membrane and thickness ratio of PZT to membrane.

  • PDF

Evaluation on the Electro-electrodialysis for hydrogen production by thermochemical water-splitting IS process (열화학적 수소제조 IS 프로세스의 효율향상을 위한 전해-전기투석의 실험적 평가)

  • Hong, Seong-Dae;Kim, Jeong-Geun;Lee, Sang-Ho;Choi, Sang-Il;Bae, Ki-Kwang;Hwang, Gab-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.13-16
    • /
    • 2006
  • Electro-electrodialysis (EED) experiments were carried out for the HI concentration from HIx $(HI-H_2O-I_2)$ solution to improve the Hl decomposition reaction in the thermochemical water-splitting is (iodine-Sulfur) process. EED cell is composed of the collector electrode and electrolyte. Nafion 117 which was cation exchange membrane used as an electrolyte, and the activated carbon cloth used as an electrode. The HI concentration experiment was carried out using the HIx solution and molar ratio of the $I_2$ were varied from 1 to 3 mole. The cell voltages were decreased as temperature increase. And, membrane properties such as transport number of proton and electro-osmosis coefficient were decreased as temperature increase

  • PDF

Electro-electrodialysis Using the Radiation-treated Cation Exchange Membrane by Accelerated Electron Radiation to Concentrate HI from HIx Solution (전자선 가속기에 의해 방사선 처리한 양이온교환막을 이용한 전해-전기투석에 의한 HIx용액으로부터 HI의 농축)

  • Hwang, Gab-Jin;Kim, Jeong-Keun;Lee, Sang-Ho;Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.338-344
    • /
    • 2007
  • Electro-electrodialysis of hydriodic acid with HI molality of ca. 9.5 $mol/kg-H_2O$ was examined in the presence of iodine using a commercial cation exchange membrane, CMB, as a separator. For the increase of the selectivity of proton permeation, the membrane was radiation-treated by accelerated electron radiation. The membrane properties (area resistance, ion exchange capacity, water content) of the radiation-treated membranes were measured. The area resistance in 2 $mol/dm^3$ KCl solution, ion exchange capacity and water content of the radiation-treated membranes at each dose rate dad almost the same value as that of the non-treated membrane (original of CMB membrane). Electro-electrodialysis of hydriodic acid with HI molality of ca. 9.5 $mol/kg-H_2O$ was examined at $75^{\circ}C$ with 9.6 $A/dm^2$. The radiation-treated cation exchange membrane by accelerated electron radiation had higher selectivity of the proton permeation by cross-linking structure of polymer than that of the non-treated membrane.

A small-scale membrane electro-dialyser for domestic use

  • Chaalal, Omar;Hossain, Md.M.
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • A small-scale electro-dialysis system was constructed for domestic use. It is composed of six compartments in which five special polystyrene ionic membranes are housed. A series of experiments on the transport of sodium and chloride ions through polystyrene membranes was performed and the effects of electric current and voltage on the pH of water were investigated. This electrodialyser could reduce the NaCl content to an acceptable level (5307 mg/L) when water containing 9945 mg/L of sodium chloride is fed to the electrodialyser. The reduction was by the action of direct current 60 mA/100 mA when a 15 V / 20 V potential is maintained across the membrane. The results showed that the pH of the treated water attained a value in the range of 7-8, with the chloride concentration of 5307 mg/L when the voltage was in the range of 20 volts. This was achieved when two of the small-scale electro-dialysers were placed in series and the solutions from the respective compartments were mixed. This is considered useful because this complies to the requirement of drinking water standard both in terms of chloride and pH. Therefore, this type electrodialyserhas the potential for domestic uses in isolated houses where potable water supply is not available.

Effect of electrocoagulation on sludge characteristics in EC-MBR (EC-MBR에서 전기응집이 슬러지 특성에 미치는 영향)

  • Um, Se-Eun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.42-49
    • /
    • 2017
  • The application of electro-coagulation has been attempted to control the membrane fouling problem in a MBR (Membrane Bio-Reactor). This study examined the effects of the operating parameters (current density and contact time) of the electro-coagulation process on the change in the characteristics of activated sludge. The current density changed from 2.5 to 12, $24A/m^2$, and the contact time was varied from 0 to 2 and 6 hr, respectively. At a current density of $24A/m^2$ and 6 hr of operation, the MLSS changed from 6,800 to 7,000 mg/L (3% increase), but the MLVSS did not increase significantly. After 6 hr of operation, the soluble COD decreased from 71 to 37 mg/L under the $24A/m^2$ condition, from 113 to 67 mg/L under the $12A/m^2$ condition, and from 84 to 80 mg/L under the $2.5A/m^2$ condition. On the other hand, soluble-TN and -TP concentration showed slight changes. The soluble-EPS and Bound-EPS concentration decreased slightly with increasing current density. The membrane filtration performance of activated sludge before and after electro-coagulation was compared. The filtration resistances after electro-coagulation decreased from 6 to 61 %, particularly as the current density and contact time were increased. This indicates that electro-coagulation can be used to control membrane fouling in the MBR process.

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

Membrane Strip 크로마토그래피 방법에 기초한 전기화학발광 (Electro-Chemiluminescence) 면역센서의 개발

  • Yun, Chae-Ha;Baek, Se-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.206-207
    • /
    • 2000
  • A disposable, electro-chemiluminescent immunosensor utilizing a screen-printed carbon electrode and liposome coupled to antibody as tracer has been constructed. In proportion to the analyte (Legionella species as a model) concentration, the analyte-immunoliposome complexes were transferred by the capillary action through a membrane strip to the electrode, the liposomes were lysed in the presence of detergent, and ruthenium was released for signal generation. Such performance of the immunosensor was appropriate for a point-of-care testing.

  • PDF

Effect of current density and contact time on membrane fouling in electrocoagulation-MBR and their kinetic studies on fouling reduction rate (전기응집-MBR 공정의 전류밀도와 접촉시간이 막 오염에 미치는 영향과 막 오염 저감 속도론적 고찰)

  • Um, Se-Eun;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • Recently EC-MBR (Elctrocoagulation - Membrane Bio Reactor) has been suggested as one of alternative processes to overcome membrane fouling problems. Most important operational parameters in the EC-MBR are known to current density and contact time. Their effect on membrane filtration performances has been reported well, however, quantitative interrelationship between both parameters not been investigated yet. The purpose of this study is to give a kinetic model suggesting the current density and the contact time required to reduce the membrane fouling. The 4 different set of current densities (2.5, 6, 12 and $24A/m^2$) and contact times (0, 2, 6 and 12 hr) were selected as operational parameters. After each electro-coagulation under the 16 different conditions, a series of membrane filtration was carried out. The membrane fouling decreased as the current density and contact time increased, Total fouling resistances under different conditions, $R_t(=R_c+R_f)$ were calculated and compared to those of the controls ($R_0$), which were calculated from the data of experiments without electro-coagulation. A kinetic approach for the fouling reduction rate ($R_t/R_0$) was carried out and the equation ${\rho}^{0.46}_it=7.0$ was obtained, which means that the product of current density and the contact time needed to reduce the fouling in certain amounts (in this study, 10% of fouling reduction) is always constant.