• Title/Summary/Keyword: electro-generated $Cl_2$

Search Result 9, Processing Time 0.019 seconds

Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution (전해생성(電解生成)된 염소(鹽素)에 의한 구리의 침출(浸出) 거동(擧動))

  • Kim, Eun-Young;Kim, Min-Seuk;Lee, Jae-Chun;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.33-40
    • /
    • 2006
  • Leaching behavior of copper using electro-generated chlorine was investigated in hydrochloric acid solutions. When leached copper concentration was lower than 3.6g/L, the utilization efficiency of the electro-generated chlorine was close to 100% at $10mA/cm^2,\;25^{\circ}C$, 400 rpm in 1M HCl solutions. The concentration ot the leached copper over 3.6g/L caused the electrode potential to drop quietly, leading to a change or leaching mechanism. The leaching rate oi copper began to decrease at the concentration of copper 5.2g/L. This is probably due to the formation of a layer of CuCl on Cu metal in 1M HCl solutions. The leaching rate, however, was not retarded in a solution ot high chloride concentration. The high solubility of CuCl in the solution may prevent the formation of CuCl on Cu metal.

Electrochemical Degradation of Phenol by Electro-Fenton Process (전기-펜톤 공정에 의한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Oxidation of phenol in aqueous media by electro-Fenton process using Ru-Sn-Sb/graphite electrode has been studied. Hydrogen peroxide was electrically generated by reaction of dissolved oxygen in acidic solutions containing supporting electrolyte and $Fe^{2+}$ was added in aqueous media. Phenol degradation experiments were performed in the presence of electrolyte media at pH 3. Effect of operating parameters such as current, electrolyte type (NaCl, KCl and $Na_2SO_4$) and concentration, $Fe^{2+}$ concentration, air flow rate and phenol concentration were investigated to find the best experimental conditions for achieving overall phenol removal. Results showed that current of 2 A, NaCl electrolyte concentration of 2g/l, 0.5M concentration of $Fe^{2+}$, air flow rate of 1l/min were the best conditions for mineralization of the phenol by electro-Fenton.

Effect of Disinfection Process Combination on E. coli Deactivation and Oxidants Generation (E. coli 불활성화와 산화제 생성에 미치는 소독 공정 결합의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.891-898
    • /
    • 2011
  • The aim of this research was to evaluate the effect of combination of disinfection process (electrolysis, UV process) on Escherichia coli (E. coli) disinfection and oxidants (OH radical, $ClO_2$, HOCl, $H_2O_2$ and $O_3$) generation. The effect of electrolyte type (NaCl, KCl and $Na_2SO_4$) on the E. coli disinfection and oxidants generation were evaluated. The experimental results showed that performance of E. coli disinfection of electrolysis and UV single process was similar. Combination of electrolysis and UV process enhanced the E. coli disinfection and 4-carboxybenzaldehyde (4-CBA, indicator of the generation of OH radical) degradation. It is clearly showed synergy effect on disinfection and OH radical formation. However chlorine ($ClO_2$, HOCl) and oxygen type ($H_2O_2$, $O_3$) oxidants were decreased with the combination of two process. In electrolysis + UV complex process, electro-generated $H_2O_2$ and $O_3$ were reacted with UV light of UV-C lamp and increased 4-CBA degradation(increase OH radical). Disinfection of electrolyte of chlorine type was higher than that of the sulfate type electrolyte due to the higher generation of OH radical and oxidants.

Decolorization of a Rhodamine B Using Ru-graphite Electrode (Ru-흑연 전극을 이용한 Rhodamine B의 색 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.547-553
    • /
    • 2008
  • For the RhB removal from the wastewater, electrochemical method was adapted to this study. Three dimensionally stable anode (Pt, Ir and Ru) and graphite and Ru cathode were used. In order to identify decolorization, the effects of electrode, current density, electrolyte and air flow rate were investigated. The effects of electrode material, current, electrolyte concentration and air flow rate were investigated on the decolorization of RhB. Electro-Fenton's reaction was evaluated by added $Fe^{2+}$ and $H_2O_2$ generated by the graphite cathode. Performance for RhB decolorization of the four electrode systems lay in: Ru-graphite > Ru-Ru > Ir-graphite > Pt-graphite. A complete color removal was obtained for RhB (30 mg/L) at the end of 30 min of electrolysis under optimum operations of 2 g/L NaCl concentration and 2 A current. $Fe^{2+}$ addition increased initial reaction and decreased final RhB concentration. However the effect was not high.

Characteristic of Oxidants Production and Dye Degradation with Operation Parameters of Electrochemical Process (전기화학적 공정의 운전인자에 따른 산화제 생성과 염료 분해 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1235-1245
    • /
    • 2009
  • The purpose of this study is to investigate electro-generation of free Cl, $ClO_2$, $H_2O_2$ and $O_3$ and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. $ClO_2$ and $H_2O_2$ generation was decreased with the increase of pH, whereas free Cl and $O_3$ was not affected by pH. RhB degradation was increase with the pH decrease.

Leaching of copper from waste PCBs with electro-generated chlorine -Analysis of experimental factors on the leaching by the factorial design- (전해생성염소(電解生成鹽素)에 의한 폐인쇄회로기판(廢印刷回路基板)으로부터 구리 침출(浸出) -실험계획법(實驗計劃法) 적용(適用)에 의한 침출(浸出) 영향인자(影響因子)의 분석(分析)-)

  • Kim, Eun-Young;Lee, Jae-Chun;Kim, Min-Seuk;Jung, Jin-Ki;Yoo, Kyoung-Keun
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.24-33
    • /
    • 2008
  • The leaching of Cu from waste PCBs was investigated with electro-generated chlorine as an oxidant. The leaching experiments were carried out according to the design of experiments to analyze quantitatively the effect of parameters on copper leaching. From the analysis of variance (ANOVA) it was suggested that the effective parameters were current density, temperature, concentration of HCl, and the interaction between the concentration of HCl and temperature. Especially, the effect of current density was analyzed to contribute to the interpretation of result for copper leaching up to 95.7%. A multiple regression model obtained from the analysis of effective parameters explained 99% of leaching results. From the model equation, it was found that the effect of HCl concentration on copper leaching increased with temperature.

Effects of Current Density and Electrolyte on COD Removal Efficiency in Dyeing Wastewater Treatment by using Electro-coagulation (전기 응집법을 이용한 염색 폐수의 처리에서 전류 밀도와 전해질의 COD 제거율에 대한 영향)

  • Jang, Seong-Ho;Kim, Go-Eun;Kang, Jeong-Hee;Ryu, Jae-Yong;Lee, Won-ki;Lee, Jae-Yong;Park, Jin-Sick
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.653-659
    • /
    • 2018
  • In the industrial wastewater that occupies a large proportion of river pollution, the wastewater generated in textile, leather, and plating industries is hardly decomposable. Though dyeing wastewater has generally been treated using chemical and biological methods, its characteristics cause treatment efficiencies such as chemical oxygen demand (COD) and suspended solids (SS) to be reduced only in the activated sludge method. Currently, advanced oxidation technology for the treatment of dyeing wastewater is being developed worldwide. Electro-coagulation is highly adapted to industrial wastewater treatment because it has a high removal efficiency and a short processing time regardless of the biodegradable nature of the contaminant. In this study, the effects of the current density and the electrolyte condition on the COD removal efficiency in dyeing wastewater treatment by using electro-coagulation were tested with an aluminum anode and a stainless steel cathode. The results are as follows: (1) When the current density was adjusted to $20A/m^2$, $40A/m^2$, and $60A/m^2$ under the condition without electrolyte, the COD removal efficiency at 60 min was 62.3%, 72.3%, and 81.0%, respectively. (2) The removal efficiency with NaCl addition was 7.9% higher on average than that with non-addition at all current densities. (3) The removal efficiency with $Na_2SO_4$ addition was 4.7% higher on average than that with non-addition at all current densities.

Leaching of copper using electro-generated chlorine in hydrochloric acid solution (전해생성된 염소에 의한 구리 침출 연구)

  • Kim, Eun-Young;Kim, Min-Seuk;Lee, Jae-Chun;Jung, Jin-Ki
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.86-89
    • /
    • 2006
  • 전해 생성된 염소를 이용하여 구리를 침출하는 연구를 수행하였다. 염산농도 $1molL^{-1}$, 반응온도 $25^{\circ}C$, 교반속도 400rpm 조건에서 전류밀도 $10mA/cm^{2}$의 경우 반응온도에 상관없이 구리의 침출속도가 동일하였으나 $Cl_{2}$ 생성량이 충분한 $40mA/cm^{2}$의 경우 온도가 높을수록 구리의 침출속도가 증가하였다. 침출된 구리농도가 6g/L 부근에 도달하면 염소의 공급속도에 상관없이 구리의 침출이 둔화되었다. 이는 구리-염소 착화물의 형성과 관련된 것으로 생각된다.

  • PDF

Solidification of Molten Salt Waste by Gel-Route Pre-treatment (겔화 전처리법을 이용한 폐용융염의 고형화)

  • Park Hwan Seo;Kim In Tae;Kim Hwan Young;Ryu Seung Kon;Kim Joon Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • This study suggested a new method for the solidification of molten salt waste generated from the electro-metallurgical process in the spent fuel treatment. Using binary material system, sodium silicate and phosphoric acid, metal chlorides were converted into metal phosphate in the micro-reaction module formed by SiO$_{2} particles. The volatile element in the reaction module would little vaporized below 1100$^{circ}$C After the gel product was mixed with borosilicate glass powder and thermally treated at 1000$^{circ}$C, li exists as Li$_{3}$PO$_4$ separated from glass phase and, Cs and Sr would be incorporated into an amorphous phase from XRD analysis. In case of the addition of ZrCl$_{4}$ to the binary system, the gel products were transformed into NZP structure considered as an prospective ceramic waste form after heat-treatment above 700 $^{circ}$C. From these results, the gel-route pretreatment can be considered as an effective approach to the solidincation of molten salt waste by the confirmed process or waste form and this also would be an alternative method on the ANL method using zeolites in USA by the confirmation of its chemical durability as an future work.

  • PDF