• Title/Summary/Keyword: electro thermal

Search Result 419, Processing Time 0.029 seconds

Nondestructive Interfacial Evaluation and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소 섬유 강화 에폭시아크릴레이트 복합재료의 자외선과 열경화에 따른 경화 모니터링 및 비파괴적 계면 평가)

  • 박종만;공진우;김대식;이재락
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2003
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermo setting composite with different curing processes were investigated using electro-micromechanical test. After curing, the residual stress was monitored by measurement of electrical resistance and then compared to various curing processes. In thermal curing case, matrix tensile strength, modulus and interfacial shear strength were higher than those of ultraviolet curing case. The shrinkage measured during thermal curing occurred significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient. The apparent modulus measured in the thermal curing indicated that mechanical and interfacial properties were highly improved. The reaching time to the same stress of thermal curing was faster than that of UV curing case.

Effect of Thermal Pressing Temperature on the Mechanical and Material Properties of Electro-spun Polyacrylonitrile Nano-fibrous Separator (열압착 온도가 전기방사 Polyacrylonitrile 분리막의 기계적 강도 및 물성치에 미치는 영향)

  • Kim, Minchoel;Ko, Tae Jo;Arifeen, Waqas Ul;Dong, Ting
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.109-116
    • /
    • 2019
  • The mechanical deformation of a battery separator causes internal short-circuiting of the cathode - anode, which directly affects the explosion/ignition of batteries. To increase the mechanical properties of the separator fabricated by electro-spinning, use of a thermal pressing method is inevitable. Therefore, this research aims to maximize the mechanical strength of a porous separator by finding the proper thermal press temperatures given to Electro-spun Polyacrylonitrile (PAN) nanofibers. The different thermal press temperatures $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, and $100^{\circ}C$ were applied to the electro-spun fiber at 30 MPa pressure for one hour. The higher the temperature, the higher the resultant tensile strength; however, a higher temperature also lowered the strain and porosity. Thus, the membrane thermal pressed at $50^{\circ}C$ showed the best mechanical properties and the second highest porosity. Using the data, $50^{\circ}C$ was judged as the best thermal pressing temperature in terms of performance.

Nondestructive Damage Sensing and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소섬유 강화 Epoxyacrylate 복합재료의 UV 및 열경화에 따른 비파괴적 손상 감지능 및 경화 Monitoring)

  • Kong, Jin-Woo;Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.261-264
    • /
    • 2002
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermosetting composite with different curing processes was investigated using electro-micromechanical test. After curing, residual stress was monitored by measurement of electrical resistance (ER) and then it was compared to correlate with various curing processes. In thermal curing, curing shrinkage appeared significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The change in electrical resistance (ΔR) on thermal curing was higher than that on ultraviolet (UV) curing. For thermal curing, apparent modulus was the highest and reaching time until same strain was faster. So far thermal curing shows strong durability on the IFSS after boiling test.

  • PDF

Design of The Micro Fluidic Heat Flux Sensor (유동형 미세 열유속 센서의 설계)

  • Kim, Jung-Kyun;Cho, Sung-Cheon;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.138-145
    • /
    • 2009
  • A suspended membrane micro fluidic heat flux sensor that is able to measure the heat flow rate was designed and fabricated by a complementary-metal-oxide-semiconductor-compatible process. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, low pass filter, and lock-in amp has enabled the resolution of 50 nW power and provides the sensitivity of $11.4\;mV/{\mu}W$. The heater modulation method was used to eliminate low frequency noises from sensor output. It is measured with various heat flux fluid of DI-water to test as micro fluidic application. In order to estimate the heat generation of samples from the output measurement of a micro fluidic heat-flux sensor, a methodology for modeling and simulating electro-thermal behavior in the micro fluidic heat-flux sensor with integrated electronic circuit is presented and validated. The electro-thermal model was constructed by using system dynamics, particularly the bond graph. The electro-thermal system model in which the thermal and the electrical domain are coupled expresses the heat generation of samples converts thermal input to electrical output. The proposed electro-thermal system model shows good agreement with measured output voltage response in transient state and steady-state.

The Characteristics of Thermal Resistance for Fluxless Eutectic Die Bonding in High Power LED Package (Fluxless eutectic die bonding을 적용한 high power LED 패키지의 열저항 특성)

  • Shin, Sang-Hyun;Choi, Sang-Hyun;Kim, Hyun-Ho;Lee, Young-Gi;Choi, Suk-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.303-304
    • /
    • 2005
  • In this paper, we report a fluxless eutectic die bonding process which uses 80Au-20Sn eutectic alloy. The chip LEDs are picked and placed on silicon substrate wafers. The bonding process temperatures and force are $305\sim345^{\circ}C$ and 10$\sim$100gf, respectively. The bonding process was performed on graphite heater with nitrogen atmosphere. The quality of bonding are evaluated by shear test and thermal resistance. Results of fluxless eutectic die bonding show that shear strength is Max. 3.85kgf at 345$^{\circ}C$ /100gf and thermal resistance of junction to die bonding is Min. 3.09K/W at 325$^{\circ}C$/100gf.

  • PDF

A Study on the Causes and the Analysis of Electrical Fires - focused on Heat Analysis for Electrical Wires- (전기화재의 발생원인 및 분석에 관한 연구 - 전선의 열해석을 통하여 -)

    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.72-76
    • /
    • 2002
  • Nowaday, with the growth of software for electro-thermal analysis, it has been studied the precise analysis and investigation of cause for the electrical fire using computer simulation on the basis of theory for electro-thermal analysis. But it is very lacking for the precise analysis and investigation of cause for the electrical fire. In this paper, we have simulated the thermal analysis for electrical wire according to the value of current and deteriorating time in a overload and a short with the electrical wire of the L's company product(600 V VVF : Three core) using the elec-tro-thermal finite element method(Flux2D).

Comparison of Transverse Flux Rotary Machines with Different Stator Core Topologies

  • Lee, Jiyoung;Chung, Shiuk;Koo, Daehyun;Han, Choongkyu
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2014
  • The objective of this paper is to provide a comparison between two transverse flux rotary machines (TFRM) with different topologies of stator cores. Depending on how to make stator core with laminated steel sheets, the one topology is 'perpendicular stacking core' and the other is 'separated core'. Both of the two cores have been designed considering 3-dimensional (3-D) magnetic flux path with the same output power conditions, but the core losses are quite different and it causes different magnetic and thermal characteristics. For comparison of these two topologies of stator cores, therefore, core losses have been calculated and used as a heat source in no-load conditions, and the thermal stress has been also calculated. 3-D finite element method has been used for the magnetic field, thermal, and stress analysis to consider the 3-D flux path of the TFRM. After comparing the analysis results of the two topologies, experimental results are also presented and discussed.

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND OXYGEN ADMIXTURE PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, EunHa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.207-207
    • /
    • 2016
  • plasma group velocities of neon with oxygen admixture (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities outside interelectrode region are in the order of 104 m/s.The plasma ambipolar diffusion velocities are calculated to be in the order of 102 m/s. Plasma jet is generated by all fixed sinusoidal power supply, total gas flow and repetition frequency at 3 kV, 800 sccm and 40 kHz, respectively. The amount of oxygen admixture is varied from 0 to 2.75 %. By employing one dimensional convective wave packet model, the electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be in a range from 1.65 to 1.95 eV.

  • PDF

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND ARGON PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.156.1-156.1
    • /
    • 2015
  • Neon and argon plasma group velocities (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities in upstream and downstream region are in the order of 104-105 m/s. The plasma ambipolar diffusion velocities are calculated to be in the order of 101-102 m/s. Plasma jet is generated by sinusoidal power supply in varying voltages from 1 to 4 kV at repetition frequency of 40 kHz. By employing one dimensional convective wave packet model, the neon and argon electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be 1.95 and 1.18 eV, respectively.

  • PDF

Investigation on $SF_6$ Hybrid Interrupter using Thermal Expansion and Arc Rotation Principle (자력팽창 및 아크 회전에 의한 배전급 $SF_6$ 복합소호부 개발 연구)

  • Lee, B.W.;Sohn, J.M.;Kang, J.S.;Choe, W.J.;Kim, Y.K.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.919-921
    • /
    • 2000
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. In this research, the principle of the interrupting techniques are given and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF