• Title/Summary/Keyword: electrical resistivity tomography

Search Result 84, Processing Time 0.026 seconds

Analysis of Scale and Shape of Limestone Cavities using Borehole Drilling and Geophysical Investigations (시추 및 물리탐사를 이용한 석회암 공동의 분포 규모 분석)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Jang, Il-Ho;Choi, Yong-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.251-263
    • /
    • 2015
  • Geological mapping, borehole drilling, electrical resistivity, and seismic tomography surveys were conducted in order to map underground cavities and better understand the mechanisms driving subsidence in a limestone region in Korea. Limestone outcrops in the study area generally alternate between calcite-rich and calcite-poor rock. The results reveal that in areas experiencing subsidence, cavities occur mainly around soil-rock boundaries at depths of 7~14 m. These results are based on comparative analyses of electrical resistivity, seismic tomography, and borehole logging data. The volumes of the cavities are relatively small in a range of 558~835 ㎥ and they have a shape typical of suffosion sinkholes, which are typically found where sandy soils overlie bedrock cavities.

Image Reconstruction using Modified Iterative Landweber Method in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 수정된 반복 Landweber 방법을 이용한 영상 복원)

  • Kim, Bong-Seok;Kim, Ji-Hoon;Kim, Sin;Kim, Kyung-Youn
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.36-44
    • /
    • 2012
  • Electrical impedance tomography is a relatively new imaging modality in which the internal conductivity (or resistivity) distribution of a object is reconstructed based on the injected currents and measured voltages through the electrodes placed on the surface of the object. In this paper, it is assumed that the relationship between the resistivity distribution and the resistance of electrodes is linear. From this linear relation, the weighting matrix can be obtained and modified iterative Landweber method is applied to estimate the internal resistivity distribution. Additionally, to accelerate the convergence rate and improve the spatial resolution of the reconstructed image, optimal step lengths for the iterative Landweber method are computed from the objective function in the least-square sense. The numerical experiments have been performed to illustrate the superior reconstruction performance of the proposed scheme.

Numerical and laboratory investigations of electrical resistance tomography for environmental monitoring

  • Heinson Tania Dhu Graham
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Numerical and laboratory studies have been conducted to test the ability of Electrical Resistance Tomography-a technique used to map the electrical resistivity of the subsurface-to delineate contaminant plumes. Two-dimensional numerical models were created to investigate survey design and resolution. Optimal survey design consisted of both downhole and surface electrode sites. Resolution models revealed that while the bulk fluid flow could be outlined, small-scale fingering effects could not be delineated. Laboratory experiments were conducted in a narrow glass tank to validate theoretical models. A visual comparison of fluid flow with ERT images also showed that, while the bulk fluid flow could be seen in most instances, fine-scale effects were indeterminate.

Resistivity Image Reconstruction Using Interacting Dual-Mode Regularization (상호작용 이중-모드 조정방법을 이용한 저항률 영상 복원)

  • Kang, Suk-In;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.152-162
    • /
    • 2016
  • Electrical resistivity tomography (ERT) is a technique to reconstruct the internal resistivity distribution using the measured voltages on the surface electrodes. ERT inverse problem suffers from ill-posedness nature, so regularization methods are used to mitigate ill-posedness. The reconstruction performance varies depending on the type of regularization method. In this paper, an interacting dual-mode regularization method is proposed with two different regularization methods, L1-norm regularization and total variation (TV) regularization, to achieve robust reconstruction performance. The interacting dual-mode regularization method selects the suitable regularization method and combines the regularization methods based on computed mode probabilities depending on the actual conditions. The proposed method is tested with numerical simulations and the results demonstrate an improved reconstruction performance.

Rock Quality using Seismic Tomography in Deep Tunnel Depths (대심도 탄성파 토모그래피 탐사를 이용한 암반분류)

  • Koo, Ja-Kab;Kim, Young-Duck;Kwon, So-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.5-13
    • /
    • 2002
  • In tunnel design, geotechnical survey of over 200m tunnel depth is required because of its characteristical topography. For this reason, there are difficulties in collecting information of basic data in tunnel design because of large-scale costs in borehole tests, of limits to a geotechnical analysis by the existing refraction seismic survey and of analytical errors in steep mountainous area. Seismic tomography has many advantages as follows; 1) seismic velocity as absolute value is more reliable than electrical resistivity, 2) geotechnical analysis in deep tunnel depth is available by seismic velocity, 3) analytical errors is reduced in steep mountainous area. In this paper, it was found out a correlation of seismic velocity and Q in tunnel design in the neighborhood of the National Capital region and the reduction effect of tunnel construction cost using reliable rock quality by seismic tomography compared with by borehole data and electricity resistivity data.

  • PDF

Validation of a new magnetometric survey for mapping 3D subsurface leakage paths

  • Park, DongSoon;Jessop, Mike L.
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.891-902
    • /
    • 2018
  • Techniques for more reliable detection of 3D subsurface flow paths are highly important for most water-related geotechnical projects. In this case study, a magnetometric resistivity method with a new approach and state-of-the-art technology ("Willowstick survey") was applied to the testbed dam (YD dam) site, and its applicability was validated by geotechnical investigation techniques including borehole drilling and sampling, Lugeon test, flow direction and velocity test, and seismic tomography. In addition to the magnetometric survey, a 3D electrical resistivity survey was performed independently and the results were compared and discussed. The electrical resistivity survey was effective in detecting groundwater levels, but it was limited in mapping leakage paths. On the other hand, the Willowstick magnetometric survey effectively detected geologic weaknesses (e.g., fault fracture) and potential leakage paths of the dam site foundation rocks. The results of this research are expected to be effective for water infrastructures where leakage is an important issue.

Extended Kalman Filter Approach to Dynamic Electrical Impedance Tomography with Internal Electrodes

  • S.I. Kang;Kim, K.Y.;Kim, H.C.;Kim, M.C.;Kim, S.;Lee, H.J.;Lee, Y.J.;W.C. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.39.1-39
    • /
    • 2001
  • Impedance tomography (EIT) is a relatively new imaging modality in which the internal impedivity distribution is reconstructed based on the known sets of injected currents through the electrodes and induced voltages on the surface of the object. We describe a dynamic EIT imaging technique for the case where the resistivity distribution inside the object changes rapidly within the time taken to acquire a full set of independent measurement data, In doing so, the inverse problem is treated as the nonlinear state estimation problem and the unknown state (resistivity) is estimated with the aid of extended Kalman filter in a minimum mean square error sense. In particular, additional electrodes are attached to the known internal structure of the object ...

  • PDF

Comparison of electrode arrays for earth resistivity image reconstruction of vertical multi layers (수직 다층구조의 대지저항률 영상복원을 위한 전극배열법의 비교)

  • Boo, Chang-Jin;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.149-155
    • /
    • 2018
  • In this paper, we used ET(Electrical Tomography) for earth resistivity image reconstruction of vertical multi layer underground model. The earth resistivity is analyzed generally as the parallel multi-layer model, however possibly there happens vertical layer model. Here to find the best electrode array in case of vertical layer underground model, Wenner, Schlumberger, and Dipole-dipole electrode arrays, which are well known electrode arrays used in ET, have been tested. And Gauss-Newton algorithm is used in ET inversion. RMS error analysis shows that Wenner electrode array is best in imaging.

Effect of input current patterns on dynamic electrical impedance imaging of two-phase flows (이상유동의 동적 전기 임피던스 가시화에 대한 전류패턴의 영향)

  • Chung, Soon-Il;ljaz, U.Z.;Khambampati, A.K.;Kim, Sin;Kim, Kyung-Youn;Kim, Min-Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.475-478
    • /
    • 2006
  • In electrical impedance tomography (EIT) an array of electrodes is attached on the boundary of an object and small alternating currents are injected through these electrodes, and then the resulting voltages are measured. An estimation for the cross-sectional resistivity distribution in the object is obtained by using these current and voltage data in a nondestructive manner. In this paper, the electrical impedance imaging of two-phase flows undergoing rapid transient is considered with a special emphasis on the effect of the current pattern on the image reconstruction. The trigonometric current pattern, which is commonly used in the conventional static electrical impedance imaging, shows poor performance in case of the dynamic imaging considered in this work. Extensive numerical experiments are conducted with various kinds of current patterns and their effects on the image reconstruction performance are examined.

  • PDF

Intelligent Optimization Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography (지능 최적 알고리즘을 이용한 전기임피던스 단층촬영법의 영상복원)

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.513-516
    • /
    • 2002
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents two intelligent optimization algorithm techniques such as genetic algorithm and simulated annealing for the solution of the static EIT inverse problem. We summarize the simulation results for the three algorithm forms: modified Newton-Raphson, genetic algorithm, and simulated annealing.

  • PDF