• Title/Summary/Keyword: electrical resistivity exploration

Search Result 204, Processing Time 0.033 seconds

An Electrical Resistivity Survey for Leachate Investigation at a Solid Waste Landfill (폐기물 매립지 침출수 조사를 위한 전기비저항 탐사)

  • Lee, Keun-Soo;Cho, In-Ky;Mok, Jong-Koo;Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The electrical resistivity method is an effective geophysical tool to detect subsurface contamination because the contaminated zones show generally lower electrical resistivity. In this study, the electrical resistivity surveys were applied to a waste landfill site to image the subsurface structure around the landfill and to identify the contaminated zones. First, the dipole-dipole 2D resistivity surveys were conducted along the boundaries of landfill to define the developed contaminated zones. Then the crosshole resistivity tomography was applied to confirm the suspected contaminated zones at depth. The results of drilling and geochemical analysis of ground water supported that the low resistivity zones coincide well with the contaminated zones and the leachate pathways could be delineated effectively from the resistivity survey.

Correlation interpretation for surface-geophysical exploration data-Chojeong Area, Chungbuk (지표물리탐사 자료의 상관해석-충북 초정지역)

  • Gwon, Il Ryong;Kim, Ji Su;Kim, Gyeong Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.75-88
    • /
    • 1999
  • A recent major subject of geophysical exploration is research into 3-D subsurface imaging with a composite information from the various geophysical data. In an attempt to interpret Schlumberger sounding data for the study area in 2-D and 3-D view, resistivity imaging was firstly performed and then pseudo-3-D resistivity volume was reconstructed by interpolating several 1-D resistivity plots. Electrical resistivity discontinuities such as fracture zone were successfully clarified in pseudo-3-D resistivity volume. The low resistivity zone mainly associated with fracture zone appears to develop down to granitic basement in the central part of the study area. Seismic velocity near the lineament is estimated to be approximately as small as 3,000 m/s, and weathering-layer for the southeastern part is interpreted to be deeper than for the northwestern part. Geophysical attributes such as electrical resistivity, seismic velocity, radioactivity for the Chojeong Area were analysed by utilizing a GIS software Arc/Info. The major fault boundaries and fracture zones were resolved through image enhancement of composite section (electrical resistivity and seismic refraction data) and were interpreted to develop in the southeastern part of the area, as characterized by low electrical resistivity and low seismic velocity. However, radioactivity attribute was found to be less sensitive to geological discontinuities, compared to resistivity and seismic velocity attributes.

  • PDF

Application of Electrical Resistivity Tomography Using Single Well in Seawater Intrusion Areas (해수침투지역에서 단일 시추공을 이용한 전기비저항 토모그래피 탐사의 적용성)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.369-376
    • /
    • 2007
  • Electrical resistivity tomography was carried out at seawater intrusion monitoring wells located at watershed in coastal areas. It is difficult to identify the characteristics of resistivity near monitoring well in case of using high signalto-noise ratio array due to the high conductivity condition in coastal aquifer although electrical resistivity survey is well adopted to delineate hydrogeological characteristics with the distribution of electrical resistivity. To improve the quality of electrical resistivity survey for two sites with seawater intrusion monitoring wells, inversion with the results of holeto-surface electrical resistivity tomography using single well was executed. The results of inversion for aquifer near wells were verified with the results of drilling log with the informations of fracture, electrical conductivity logging and normal resistivity logging. The inversion for aquifer near one of two wells was also performed at low and high tide with the same electrodes, respectively. From the inversion result, it is possible to obtain the resistivity images with high resolution and to identify the characteristics of aquifer related to seawater intrusion with tidal fluctuation. From this study, it was demonstrated that the hole-to-surface electrical resistivity tomography method accompanied with drilling log, electrical conductivity logging and normal resistivity logging would be useful to delineate the hydrogeological structures near monitoring wells in coastal areas.

Time-lapse Resistivity Investigations for Imaging Subsurface Grout during Ground Stabilization

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.241-244
    • /
    • 2007
  • Cement-grouts are injected into limestone cavities beneath the road in the project area, in order to improve strength and reduce permeability; the extent to which grout has penetrated in cavities need to be monitored in order to determined effectiveness of cement-grout. Geophysical approaches, offer great potential for monitoring the grout injection process in a fast and cost-effective way as well as showing whether the grout has successfully achieved the target. This paper presents the ability of surface electrical resistivity to investigate the verification of the grout placement. In order to image the cement-grout, time-lapse surface electrical resistivity surveys were conducted to compare electrical resistivity images before and after injection. Cement-grout was imaged as anomalies exhibiting low resistivity than the surrounding rocks. In accordance with field monitoring, laboratory study was also designed to monitor the resistivity changes of cement-grout specimens with time-lapse. Time-lapse laboratory measurements indicated that electrical methods are good tool to identify the grouted zone. Pre-and post grouting electrical images showed significant changes in subsurface resistivity at grouted zone. The study showed that electrical resistivity imaging technology can be a useful tool for detecting and evaluating changes in subsurface resistivity due to the injection of the grout.

  • PDF

Resistivity Exploration of Submarine Groundwater Discharge in Busan Area (부산지역의 해저용출수 전기비저항탐사)

  • Park, Jun-Kyu;Kim, Sung-Wook;Lee, Jin-Hyuk;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.711-716
    • /
    • 2010
  • This study selected the promising area of submarine groundwater discharge(SGD) that flows into the sea following unconfined physical aquifer through the electrical resistivity survey of the land and sea. The submarine groundwater discharge(SGD) mostly flows into the sea following fracture zones, and the detection of the fault zone becomes the important guideline of groundwater discharge. Electrical sounding of the land assessed the groundwater flow and integration possibility according to the location of a fault that is a water path between underground reservoir and surface water as well as a rock fracture. In addition, the study conducted sea electrical resistivity to expand the area with high potential and selected the expected water potential groundwater area. The areas of the study were Busan and coastal areas, and for the terrain analysis, the candidates of the ground exploration were selected after analyzing lineaments that is expanded to coast direction.

  • PDF

Application of Geophysical Exploration Methods to Seepage Bone Investigation of Dam Structures (제방누수조사에의 물리탐사기법의 활용(쌍극자배열 전기비저항탐사와 SP탐사를 중심으로))

  • Won Jong-Geun;Song Sung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.240-257
    • /
    • 1999
  • More than 16 percent of the total 18,032 reservoirs over the country were reported to have leakage problems and need to be improved. Recently, a great deal of progress was made in geophysical survey techniques, particularly in electrical resistivity, and the techniques are used for variety of Purposes in groundwater and dam management due to its economical advantages. This document describes the re-evaluation of existing resistivity data including newly surveyed data, mapping of modeled value in 2-D analysis to locate seepage pathways, This contains also discussion results of more than eighteen years of professional experiences in the field of dam efficiency improvement. In comparison of surface resistivity data with several soil analysis data in laboratory, it is evident that the surface resistivity value shows a qualitative proportionality with the sand contents of the filling materials in earth dam. The result from the study also indicates that the SP method in subsurface investigation is effective to detect seepage in earth filled dam as well as piping through rock/earthfill dike.

  • PDF

Application of Electrical Resistivity Monitoring Technique to Maintenance of Embankments (저수지의 유지관리를 위한 전기비저항모니터링 기법 응용)

  • Park Sam Gyu;Kim Jung-Ho;Seo Goo Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.177-183
    • /
    • 2005
  • The subject of this paper is research into the application of electrical resistivity monitoring to detecting the water leakage of water utilization facilities. For this purpose, we installed a comprehensive monitoring system consisting of resistivity measurement, inclinometer, piezometer, and water gauge at an embankment. Using this monitoring system, we monitored the various kinds of measurement data and compared the resistivity structures and that of hydrological and engineering data in order to investigate the water leakage and stability of the embankment. The variant images of electrical resistivity at the embankment were provided from the monitoring data and we could accurately locate the portion of which resistivities have sharply changed. Furthermore, we could estimate the stability of the embankment more effectively and quantitatively by jointly interpreting the monitoring data of resistivity, water level, pore water pressure, and subsurface displacement. The monitoring experiments in this study led us to the conclusion that for the efficient maintenance of the water utilization facilities, monitoring the resistivity data and hydrological data would be much more preferable to performing the just one-time measurements.

A Study on the Resistivity Structure in Central Myanmar Basin using DC Resistivity and Magnetotellurics (전기비저항 탐사와 자기지전류 탐사 자료를 이용한 미얀마 중앙분지 전기비저항 구조 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jang, Seonghyung;Hwang, InGul;Lee, Donghoon;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.62-71
    • /
    • 2019
  • We conducted DC resistivity and MT survey to obtain the resistivity structure of the central Myanmar basin. We tried to analyze the underground structure through the resistivity variation of Myanmar by performing representative geophysical survey methods because researches on the electrical resistivity structure are insufficient in Myanmar. The electrical resistivity is expected to be low considering the marine sedimentary rocks composed of shale and sandstone in this area. The DC resistivity and MT survey were carried out using SmartRho of Geolux Co., Ltd. and MTU-5A of Phoenix geophysics Ltd., respectively, to visualize the electrical resistivity structure of study area. DC resistivity and MT survey showed an electrical resistivity less than dozens of ohm-m within the depth of 100 m. In particular, MT survey data were almost similar to TM and TE modes in the frequency range above 1 Hz. The two-dimensional inversion of MT data showed a subsurface structure with low resistivity below 150 ohm-m divided into east-west direction. We confirmed that the inversions of DC resisitivity and MT data along an overlapped survey line represented similar results. In the future, considering the high electrical conductivity, it would be effective to perform DC resistivity and MT survey simultaneously to study the electrical resistivity structure of the central Myanmar basin.

Application of resistivity monitoring to examine the grouting effect

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.79-82
    • /
    • 2006
  • This paper presents to examine the ability of an electrical resistivity method to monitor the grouting effect at subsidence area. To monitor the changes in ground resistivity before and during the grout, series of electrical resistivity monitoring surveys have been conducted. Data has acquired in the form of grid making nine lines parallel to road and four lines traverse the road. Two kinds of electrode arrays modify pole-pole and dipole-dipole arrays were used during resistivity data acquisition. In this paper, the results show that electrical prospecting is an effective method to detect low resistivity imaging zone by grout during the ground reinforcement.

  • PDF