• Title/Summary/Keyword: electrical resistance module

Search Result 119, Processing Time 0.024 seconds

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.

A Study of Voltage Balancing Method in Series-Connected EDLCs for High Power Applications (다중 직렬 연결된 대용량 EDLC 모듈에 적합한 전압 밸런싱 기법에 대한 연구)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.22-27
    • /
    • 2015
  • In this paper, the problem of voltage unbalancing in series-connected multiple electric double-layer capacitors(EDLCs) is studied. Good understanding of this problem is required in order to increase reliability and stability of an energy storage system comprising EDLCs. Existing methods to settle voltage unbalancing cannot mitigate the problem enough for each cell, since most method have been applied to each module. For equalizing between cells, Zener diode which is one of passive method have been well examined in literature. However, Zener have well not used in balancing due to heating problem. In addition, It is difficult to choose Zener diode fitted rating voltage of EDLC, because of its internal resistance. Thus, we proposed passive balancing using Zener diode by analyzing parasitic element of Zener and EDLC. To experimentally confirm the balancing effect, we compared in two occasions which are with and without passive. As a result, proposed passive balancing circuit mitigated unbalanced voltage gap between EDLCs.

150 kJ Compact Capacitive Pulsed Power System for an Electrothermal Chemical Gun

  • Lee, Byung-Ha;Kim, Jin-Sung;Kim, Seong-Ho;Lee, Young-Hyun;Yang, Kyung-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.971-976
    • /
    • 2012
  • A 150 kJ compact capacitive pulsed power system (CCPPS) capable of delivering electrical energy into an electrothermal chemical (ETC) gun on a vehicle has been studied. The CCPPS provides pulsed electrical energy into a capillary plasma injector which generates plasma of tens of thousands $^{\circ}K$ in temperature and has a nonlinear resistance depending on the current. The design requirements of the CCPPS are as follows: the maximum power of 250 MW, the pulse width of about 0.6 ms, the volume of no more than 0.5 cubic meter, the efficiency of energy transfer over 80 % and the repetition rate of 4~5 times per minute. The constructed CCPPS is composed of four 37.5 kJ capacitor bank modules in parallel to make a trapezoid pulse shape and to satisfy the design requirements. Each module is designed to achieve high reliability, safety, efficiency and energy density to endure severe operating conditions. The results of the performance test on the CCPPS using a 120 mm ETC gun are described.

Dimming Control of the LED Luminaire Emergency Exit Sign Operation using a Hybrid Super Capacitor of DC-DC Convertor (하이브리드 슈퍼커패시터 DC-DC 컨버터를 이용한 LED 비상 유도등 동작 디밍 제어)

  • Hwang, Lark-Hoon;Kim, Jin-Sun;Na, Yong-Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.220-229
    • /
    • 2017
  • In this paper, To take advantage a variety of DC power as the boost DC-DC converter design specifications through the inductor L and capacitor C through PSPICE to calculate the best estimate of the value. Boost DC-DC converter with a switch device using IRF840 and reverse recovery time Schottky diodes with excellent with constant current controller using D10SC6M and resistance can be configured to considering the Power LED Module was driven by the production. Converter's switching frequency is 50 kHz, the first Duty Rate was made to increase gradually depending on the value of the detection were, 10 % in the output voltage. As a result, the simulated Boost Power LED driver characteristics is in comparison with the design specifications, 5% or less as the error was approximated. Finally, when input 15 V were offered, a stable output 24 V were obtained. and Dimming Control through the adjustment of brightness and current consumption were possible.

Selective Epitaxial Growth of Si and SiGe using Si-Ge-H-Cl System for Self-Aligned HBT Applications (Si-Ge-H-Cl 계를 이용한 자기정렬 HBT용 Si 및 SiGe의 선택적 에피성장)

  • 김상훈;박찬우;이승윤;심규환;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.573-578
    • /
    • 2003
  • Low temperature selective epitaxial growth of Si and SiGe has been obtained using an industrial single wafer chemical vapor deposition module operating at reduced pressure. Epitaxial Si and heteroepitaxial SiGe deposition with Ge content about 20 % has been studied as extrinsic base for self-aligned heterojunction bipolar transistors(HBTs), which helps to reduce the parasitic resistance to obtain higher maximum oscillation frequencies(f$\_$max/). The dependence of Si and SiGe deposition rates on exposed windows and their evolution with the addition of HCl to the gas mixture are investigated. SiH$_2$Cl$_2$ was used as the source of Si SEG(Selective Epitaxial Growth) and GeH$_4$ was added to grow SiGe SEG. The addition of HCl into the gas mixture allows increasing an incubation time even low growth temperature of 675∼725$^{\circ}C$. In addition, the selectivity is enhanced for the SiGe alloy and it was proposed that the incubation time for the polycrystalline deposit on the oxide is increased probably due to GeO formation. On the other hand, when only SiGe SEG(Selective Epitaxial Growth) layer is used for extrinsic base, it shows a higher sheet resistance with Ti-silicide because of Ge segregation to the interface, but in case of Si or Si/SiGe SEG layer, the sheet resistance is decreased up to 70 %.

Defects and Electrical Properties of NiO and Co3O4-doped ZnO-Bi2O3-Sb2O3 Ceramics (NiO와 Co3O4를 첨가한 ZnO-Bi2O3-b2O3 세라믹스의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • In this study we aims to examine the effects of $Co_3O_4$ and NiO doping on the defects and electrical properties in ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5) varistors. It seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects in Co and Ni co-doped ZBS system, however only ${V_o}^{\cdot}$ appeared in Co- or Ni-doped ZBS. Even though the same defects it was different in capacitance (1.5~4.5 nF) and resistance ($0.3{\sim}9.5k{\Omega}$). The varistor characteristics were improved with Co and Co+Ni doping (non-linear coefficient, ${\alpha}$= 36 and 29, relatively) in ZBS. The various parameters ($N_d=1.43{\sim}2.33{\times}10^{17}cm^{-3}$, $N_t=1.40{\sim}2.28{\times}10^{12}cm^{-2}$, ${\Phi}b$=1.76~2.37 V, W= 98~118 nm) calculated from the C-V characteristics in our systems did not depend greatly on the type of dopant, which were in the range of a typical ZnO varistors. It should be derived a improved C-V equation carefully for more reliable parameters because the variation of the varistor capacitance as a function of the applied dc voltage is depend on the defect, frequency, and temperature.

The Optimization of FCBGA thermal Design by Micro Pattern Structure (마이크로 패턴 구조를 이용한 플립칩 패키지 BGA의 최적 열설계)

  • Lee, Tae-Kyoung;Kim, Dong-Min;Jun, Ho-In;Ha, Sang-Won;Jeong, Myung-Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • According to the trends of electronic package to be smaller, thinner and more integrative, Flip Chip Ball Grid Array (FCBGA) become more used for mobile phone. However, the flip chip necessarily generate the heat by the electrical resistance and generated heat is increased due to reduced distribution area of the heat in accordance with the miniaturization trend of the package. Thermal issues can result in problems of devices that are sensitive to temperature and stress. Then the heat can generate problems to the system. In this paper, in order to improve the thermal issues of FCBGA, thermal characteristics of FCBGA was analyzed qualitatively by using the general heat transfer module of Comsol 3.5a and In order to solve thermal issues, flip chip with new micro structure is proposed by the simulation. and also by comparing existing model and analyzing variables such as pitch, height of the pattern and shape of the heat spreader, the improvement of heat dissipation characteristics about 18% was confirmed.

A Study on the Charging and Diagnosis System of xEV Reusable Waste Battery

  • Park, Sung-Jun;Kim, Chun-Sung;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.669-681
    • /
    • 2021
  • As the supply of xEV in Korea is rapidly increasing, the amount of waste batteries is expected to increase rapidly, but the current recycling system for waste xEV batteries is very insufficient. In order to properly utilize the xEV reusable battery module, it is essential to classify it into a type that has similar discharge characteristics to the current state of health(SOH), which is the discharge capacity of the battery. This paper proposes a system that can minimize the exchange of energy with the KEPCO system by using the charging/discharging method by circulating power between batteries in order to minimize the power consumption when charging and discharging waste batteries. In the proposed system, a function to measure parameters during the charging/discharging test of the waste battery was implemented to build a customized big date for the test waste battery. In addition, the dynamic characteristics of the proposed circuit were analyzed using PSIM, which is useful for power electronics analysis, and the validity of the proposed circuit was verified through experiments.

Electrical and thermal properties of polyamideimide-colloid silica nanohybrid for magnetic enameled wire

  • Han, S.W.;Kang, D.P.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.428-432
    • /
    • 2012
  • Polyamidimide (PAI)-colloidal silica (CS) nanohybrid films were synthesized by an advanced sol-gel process. The synthesized PAI-CS hybrid films have a uniform and stable chemical bonding and there is no interfacial defects observed by TEM. The thermal degradation ratio of PAI-CS (10 wt%) hybrid films is delayed by 100 ℃ compared with pure PAI sample determined by on set temperature range in TGA. The dielectric constant of PAI-CS (10 wt%) hybrid films decreases with increasing CS content up to about 5 wt% but increases at higher CS content, which is not explained simply by effective medium therories (EMT). The duration time of PAI-CS (10 wt%) hybrid coil is 38 sec, which is very longer than that of pure PAI coil sample. The PAI-CS (10 wt%) hybrid film has a higher breakdown voltage resistance than the pure PAI film at surge environment and exhibits superior heat resistance. The PAI-CS (10 wt%) sample shows the advanced and stable thermal emission properties in transformer module compared with the pure PAI sample. This result illustrates that the advanced thermal conductivity and expansion properties of PAI-CS sample in the case of appropriate sol-gel processes brings the stable thermal emission in transformer system. Therefore, new PAI-CS hybrid samples with such stable thermal emission properties are expected to be used as a high functional coating application in ET, IT and electric power products.

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.