• Title/Summary/Keyword: electrical melting

Search Result 401, Processing Time 0.023 seconds

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

Influence of Electrolytic KF on the Uniform Thickness of Oxide Layers Formed on AZ91 Mg Alloy by Plasma Electrolytic Oxidation

  • Song, Duck-Hyun;Lim, Dae-Young;Fedorov, Vladimir;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.495-500
    • /
    • 2017
  • Oxide layers were formed by an environmentally friendly plasma electrolytic oxidation (PEO) process on AZ91 Mg alloy. PEO treatment also resulted in strong adhesion between the oxide layer and the substrate. The influence of the KF electrolytic solution and the structure, composition, microstructure, and micro-hardness properties of the oxide layer were investigated. It was found that the addition of KF instead of KOH to the $Na_2SiO_3$ electrolytic solution increased the electrical conductivity. The oxide layers were mainly composed of MgO and $Mg_2SiO_4$ phases. The oxide layers exhibited solidification particles and pancake-shaped oxide melting. The pore size and surface roughness of the oxide layer decreased considerably with an increase in the concentration of KF, while densification of the oxide layers increased. It is shown that the addition of KF to the basis electrolyte resulted in fabricating of an oxide layer with higher surface hardness and smoother surface roughness on Mg alloys by the PEO process. The uniform thickness of the oxide layer formed on the Mg alloy substrates was largely determined by the electrolytic solution with KF, which suggests that the composition of the electrolytic solution is one of the key factors controlling the uniform thickness of the oxide layer.

Effects of Li2O Addition and Heat-Treatment on Formability of FeS2 Powder for Cathode of Thermal Battery (열전지 양극용 FeS2 분말의 성형성에 미치는 Li2O 첨가 및 열처리의 효과)

  • Ryu, Sung-Soo;Lee, Won-Jin;Kim, Seongwon;Cheong, Hae-Won;Cho, Sung-Baek;Kang, Seung-Ho;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • $FeS_2$ has been widely used for cathode materials in thermal battery because of its high stability and current capability at high operation temperature. Salts such as a LiCl-KCl were added as a binder for improving electrical performance and formability of $FeS_2$ cathode powder. In this study, the effects of the addition of $Li_2O$ in LiCl-KCl binder on the formability of $FeS_2$ powder compact were investigated. With the increasing amount of $Li_2O$ addition to LiCl-KCl binder salts, the strength of the pressed compacts increased considerably when the powder mixture were pre-heat-treated above $350^{\circ}C$. The heat-treatment resulted in promoting the coating coverage of $FeS_2$ particles by the salts as $Li_2O$ was added. The observed coating as $Li_2O$ addition might be attributed to the enhanced wettability of the salt rather than its reduced melting temperature. The high strength of compacts by the $Li_2O$ addition and pre-heat-treatment could improve the formability of $FeS_2$ raw materials.

Optical Properties of Soda-lime Color Glass Fabricated by Using Refused Coal Ore (석탄폐석을 이용한 소다라임계 컬러유리의 광학적 특성)

  • Lim, Tae-Young;Jeong, Sang-Su;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.524-534
    • /
    • 2010
  • Glass was fabricated using refused coal ore obtained from the Dogye coal mine in Samcheok. We additionally used soda ash and calcium carbonate to make a glass with the chemical composition of soda-lime glass, and we also used white, brown, and green glass cullet to make various kinds of colored glass. Transparent glass was fabricated by melting batch materials including refused coal ore at $1550^{\circ}C$ for 1 hr in an electrical furnace. The light transmittance and color chromaticity were measured by a UV/VIS/NIR spectrometer. Transparent glass with a light transmittance of over 80% was fabricated using normal refused coal ore and white glass cullet. Various kinds of colored glass with a light transmittance of 30-80% were fabricated using refused coal ore and brown or green glass cullet. The light transmittance of the mixed color glass samples, fabricated using normal refused coal ore and brown glass cullet and green glass cullet, indicated 30-47%, a relatively low value, in the condition of a cullet ratio of 20-50%. The characteristics of the color chromaticity of the glass samples were indicated in a chromaticity diagram by x-coordinates, y-coordinates, Y (lightness). The values of x-coordinates and y-coordinates were moved with a regular directional property according to the kind and amount of glass cullet. Therefore, we concluded that refused coal ore can be used for raw materials of color glass products like art glass and glass tile.

Synthesis of Cu-coated Ni-based Bulk Metallic Glass Powders by Gas Atomization and Spray Drying Process

  • Kim, Byoung-Kee;Kim, Yong-Jin;Kim, Jin-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.936-936
    • /
    • 2006
  • Bulk amorphous materials have been intensively studied to apply for various advanced industry fields due to their high mechanical, chemical and electrical properties. These materials have been produced by several techniques such as mechanical alloying, melt spinning and gas atomization, etc. Among them, the atomization is the most potential technique for commercialization due to high cooling rate during solidification of the melt and mass productivity. However, the amorphous powders still have some limitations because of their low ductility and toughness. Therefore, intensive efforts have to be carried out to increase the ductility and toughness. In this study, the Ni-based amorphous powder was produced by the gas atomization process. And in order to increase the ductile toughness, ductile Cu phase was coated on the Ni amorphous powder by spray drying process. The characteristics of the as-synthesis powders have been examined and briefly mentioned. The master alloy with $Ni_{57}Zr_{20}Ti_{16}Si_2Sn_3$ was prepared by vacuum induction melting furnace with graphite crucible and mold. The atomization was conducted at $1450^{\circ}C$ under the vacuum of $10^{-2}$ torr. The gas pressure during atomization was varied from 35 to 50 bars. After making the Ni amorphous powders, the spray drying was processed to produce the Cu -coated Ni amorphous composite powder. The amorphous powder and Cu nitrate solution were mixed together with a small amount of binder and then it was sprayed at temperature of $130^{\circ}C$ and rotating speed of 15,000 R.P.M.

  • PDF

Characteristics of HFIX Insulated Wire Sheaths Contaminated by Pollutants (오염물질에 따른 HFIX 절연전선 피복의 특성 변화에 관한 연구)

  • Choi, Su-Gil;Nam, Yeong-Jae;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-17
    • /
    • 2020
  • In this study, the characteristics of HFIX insulated wire sheaths contaminated by pollutants were examined. KS C IEC 60811-1-3 standard was followed in performing the water-resistance wire tests. Pollutants were selected, and the specimens were exposed to the pollutants for a maximum duration of four weeks. The maximum tensile load and the elongation rate were measured each week. As the period of pollution exposure increased, the maximum tensile load of the specimens decreased by 6.22% and 6.52% at room temperature and high temperature, respectively, and 19.94% for specimens coated with a rust-proof lubricant. The elongation rate also decreased rapidly, such that the reductions in the properties of the sheath were significant. From the analysis of the surfaces using a scanning microscope, as the contamination period increased, structural changes such as perforation, split, and melting occurred, and the mechanical properties of the specimens decreased. Therefore, it is necessary to develop and follow an inspection cycle and periodically carry out repairs to prevent the deterioration of insulated wires.

A Scheme of Preventing Product Shortage for Die Casting Scheduling (다이캐스팅 스케줄링의 결품 방지 기법)

  • Park, Yong-Kuk;Yang, Jung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1565-1574
    • /
    • 2011
  • Scheduling of die casting is a procedure of determining quantities of cast products so as to optimize a predetermined performance criterion. This paper presents a novel scheme of preventing product shortage raised by defective castings when die casting scheduling is applied to real casting operations. The previously developed linear programming (LP) model for die casting scheduling maximizes the average efficiency of melting furnaces in regard of the usage of molten alloy. However, the LP model is not able to cope with the problem of defective products occurring in the casting process. The proposed scheme is that whenever defective products are found in a shift, the foundryman produces additional cast products using the residue of molten alloy left at the end of the next shift. Neither the calculated amount of molten alloy nor the scheduling result of the LP model does not have to be altered for this method. The simulation result demonstrates the superiority and applicability of the newly proposed scheme.

Effect of Ozone Treatment of Carbon Nanotube on PTC/NTC Behaviors of High-Density Polyethylene Matrix Composites (오존처리에 따른 탄소나노튜브 강화 고밀도 폴리에틸렌 기지 복합재료의 PTC/NTC 특성)

  • Park, Soo-Jin;Seok, Su-Ja;Lee, Jae-Rock;Hong, Sung-Kwon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.32-35
    • /
    • 2005
  • In this paper, the carbon nanotubes (CNTs) were ozonized and the positive temperature coefficient (PTC) behaviors of CNTs-filled high-density polyethylene (HDPE) conductive composites were studied. The results of element analysis (EA) and FT-IR indicate that the oxygen-containing functional groups on the CNTs surfaces, such as O-H, C-O, and C=O groups, were increased with the ozonization. Electrical resistivities of the CNTs/HDPE composites were measured by using a digital multimeter. The resistivity of the composites was increased abruptly near the crystalline melting temperature of the HDPE used as matrix, which could be attributed to the destruction of conductive network by the thermal expansion of HDPE. And, the PTC intensity of the CNTs/HDPE composites was increased with the increase of the ozone treatment time. It was probably due to the growing of maximum volume resistivity of the composites induced by the increased oxygen-containing functional groups in the CNTs surfaces.

Thermal and Electrical Properties of Poly(vinylidenefluoride-hexafluoropropylene)-based Gel-Electrolytes (Poly(vinylidenefluoride-hexafluoropropylene)계 겔-전해질의 열적, 전기적 특성)

  • 김영완;최병구;안순호
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2000
  • Polymer electrolyte films consisting of poly(vinylidenefluoride-hexafluoropropylene) (PVdF-HFP), LiClO$_3$ and a mixture of ethylene carbonate (EC) and ${\gamma}$-butyrolactone (GBL) were examined in order to obtain the best compromise between high ionic conductivity, homogeniety, dimensional and electrochemical stability. Measurements of ionic conductivity, differential scanning calorimetry and linear sweep voltammetry have been carried out for various compositions. The highest conductivity of 3.8$\times$10$^{-3}$ S$cm^{-1}$ / at 3$0^{\circ}C$ were obtained for a film of 30(PVdF-HFP)+7.8LiClO$_4$+62.2EC/GBL. From the DSC study, it has been found that the PVdF-HFP gels are stable up to 10$0^{\circ}C$, and the salt lowers the melting temperature of crystalline part of PVdF by interacting sensitively with polymer segments. When Lithium metal is in contact with the gel films, it tends to undergo corrosion and the reaction products accumulate resulting in the formation of a passive film on Li electrode. As the aging time progresses, the interfacial resistance increases continuously. Anodic stability is measured to extend up to about 4.5 V vs. Li.

  • PDF

Electrical characterizations of$Al/TiO_2-SiO_2/Mo$ antifuse ($Al/TiO_2-SiO_2/Mo$ 구조를 가진 Antifuse의 전기적 특성 분석)

  • 홍성훈;노용한;배근학;정동근
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.263-266
    • /
    • 2000
  • This paper is focused on the fabrication of reliable Al/$TiO_2-SiO_2$/Mo antifuse, which could operate at low voltage along with the improvement in on/off state properties. Mo metal as the bottom electrode had smooth surface and high melting point, and was being kept as-deposited $SiO_2$film stable. The breakdown voltage of TiO_2-SiO_2$ stacked antifuse was better than that of same-thickness (100 $\AA$) $SiO_2$antifuse because of Ti diffusion in $SiO_2$. The improving breakdown-voltage and on-resistance can be obtained as well as the influence of hillock in the bottom metal is reduced by using double insulator. Low on-resistance (65 $\Omega$) and low programming voltage (9.0 V) can be obtained in these antifuses with 250 $\AA$ double insulator.

  • PDF