• Title/Summary/Keyword: electrical impedance

Search Result 2,486, Processing Time 0.031 seconds

Electric Properties of LB Films using Impedance Analysis of Quartz Crystal (수정진동자의 임피던스 해석에 의한 LB막의 전기적 특성)

  • Jin, Cheol-Nam;Kim, Gyeong-Hwan;Yu, Seung-Yeop;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.503-507
    • /
    • 1999
  • Quartz crystal in contact with viscoelastic medium was described directly in terms of the electrical equivalent circuit of the system. Stearic acid was used as viscoelastic medium and deposited on the surface of quartz crystal using the Langmuir-Blodgett(LB) method. Impedance properties of quartz crystal coated with LB films which were investigated by using admittance diagram and $Ζ-\theta$ plot a method of impedance analysis. When stearic acid LB film was deposited on the surface of quartz crystal, resonant frequency of quartz crystal was changed about 100 Hz/layer. This result illustrates the ability of the sensor system to detect small amounts of special gas in air.

  • PDF

Simplified Impedance Modeling and Analysis for Inter-Turn Fault of IPM-type BLDC motor

  • Kim, Byeong-Woo;Kim, Kyung-Tae;Hur, Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM)-type BLDC motor having stator inter-turn faults. We also propose impedance modeling of the magnetic characteristics. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the distributed characteristics of an inter-turn fault operated by a six-switch inverter are investigated considering speed control. Moreover, this paper presents the flux density distribution and torque characteristics for analyzing the inter-turn fault of an IPM-type BLDC motor. Additionally, fault impedance is required to calculate the circulating current that causes magnetic distortion. Thus, this paper proposes a method for estimating the circulating current taking into account the voltage at the shorted turn and the rotating speed. The analysis data were verified experimentally.

Impedance spectroscopy analysis of the $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films

  • Ham, Yong-Su;Go, Jung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.27-28
    • /
    • 2009
  • In this study, we have fabricated the 3 wt% $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd printed $Al_2O_3$ substrates for the LTCCs (Low Temperature Co-fired Ceramics) applications. From the X-ray diffraion analysis, 3 wt% $Li_2CO3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at 900 $^{\circ}C$ have perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO3$ doped BST thick films were measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO3$ doped BST thick films, we employed the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO3$ doped BST thick films were measured from 20 Hz to 1 MHz at the various temperatures.

  • PDF

Knowledge-Based Approach Using Support Vector Machine for Transmission Line Distance Relay Co-ordination

  • Ravikumar, B.;Thukaram, D.;Khincha, H.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.363-372
    • /
    • 2008
  • In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.

Case Study of Second Harmonic Generation under Nonlinear Load and Second Harmonic Elimination Method Based on Impedance Variation Scheme (비선형 부하 이차 고조파 발생 실증사례 분석 및 임피던스 변동 기법을 통한 이차 고조파 저감 기법)

  • Bang, Heegyun;Kim, Sikyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.604-611
    • /
    • 2013
  • This paper presents an second harmonic elimination method based on the impedance variation scheme. Through the power quality analysis from the nonlinear loads connected on the power system, the second harmonic problems have been analyzed with a case study analysis and the experiments. In the paper, the second Harmonic generation was simulated with a single phase SCR rectifier and the analytical model is proposed for the second harmonic generation. A novel impedance variation scheme is proposed and analyzed to eliminate the second harmonic. The experiment has been performed on the 60(MVA) industry manufacturing plant. The experimental result demonstrates the proposed impedance variation scheme successfully operate on the 60(MVA) industry manufacturing plant.

광대역 접지임피던스 측정기의 설계

  • Park, Dae-Won;Jang, Un-Yong;Cha, Hyeon-Gyu;Gil, Gyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.26-26
    • /
    • 2010
  • Line to ground faults or lightning strikes in electrical power systems produce high frequency overvoltages. With this reason, a wide band analysis of the ground impedance is necessary. In the paper, design of a wideband ground impedance meter which can measure the ground impedance in ranges from 65 Hz to 1.5 MHz is described. Also, a noise elimination method by a digital band-pass filter during measurement is proposed. The maximum measurement error of the meter is estimated 3 % in full ranges.

  • PDF

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

An Improvement of Closed-Form Formula for Mutual Impedance Computation

  • Son, Trinh-Van;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Shin, Jae-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.240-244
    • /
    • 2013
  • In this paper, we present an improvement of a closed-form formula for mutual impedance computation. Depending on the center-to-center spacing between two rectangular microstrip patch antennas, the mutual impedance formula is separated into two parts. The formula based on synthetic asymptote and variable separation is utilized for spacings of more than 0.5 ${\lambda}_0$. When the spacing is less than 0.5 ${\lambda}_0$, an approximate formula is proposed to improve the computation for closely spaced elements. Simulation results are compared to computational results of mutual impedances and mutual coupling coefficients as functions of normalized center-to-center spacing in both E- and H-plane coupling configurations. A good agreement between simulation and computation is achieved.

High Impedance Fault Detection using Wavelet Transform (Wavelet 변환을 이용한 고저항 지락고장 검출)

  • Kim, Hyun;Kim, Chul-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1492-1497
    • /
    • 1999
  • High impedance fault(HIF) is defined as fault the general overcurrent relay can not detect or interrupt. Especially when HIF occur in residential areas, energized high voltage conductor results in fire hazard, equipment damage or personal threat. This paper proposes the model of the high impedance fault in transmission line using the ZnO arrester and resistance to be implemented within EMTP. The performance of the proposed model is tested on a typical 154[kV] korean transmission line system under various fault conditions. Wavelet transform is efficient and useful for the detection of high impedance fault in power system, because it uses variable windows according to frequency. In this paper, HIF detection method using wavelet transform can distinguish HIF form similar fault like arcfurance load, capacitor bank switching and line switching.

  • PDF

Characteristics for Ground Impedance of Counterpoise according to Position of Auxiliary Probe and Frequency (보조전극의 배치 및 주파수에 따른 매설지선의 접지임피던스 특성)

  • Gil, Hyoung-Jun;Kim, Dong-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.33-37
    • /
    • 2012
  • This paper describes the characteristics for ground impedance of counterpoise according to position of auxiliary probe and frequency using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of auxiliary probes. In order to analyze the effects of ground impedance due to the distance of the current probe and frequency, ground impedances were measured in case that the distance of current probe was located from 10[m] to 100[m] and the measuring frequency was ranged in 55 [Hz], 128[Hz], 342[Hz], and 513[Hz]. The results could be help to determine the position of auxiliary probe when the ground impedance was measured at grounding system.