• Title/Summary/Keyword: electrical fire possibility

Search Result 38, Processing Time 0.034 seconds

Analysis of Electrical and Thermal Signal for Series Arc in Electrical Contact (전선의 접속부에서 직렬아크에 의한 전기적 및 열적 신호 분석)

  • Kim, Doo Hyun;Hwang, Dong Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.1-7
    • /
    • 2015
  • This paper is aimed to analyze the electrical and thermal signal such as ignition possibility, ignition time, thermal characteristics and arc fault power that are associated with electrical fire in case of the occurrence of series arc at IV wiring used for interior wiring at commercial power source. In order to analyze the signal, series arc was induced by generating the constant vibration through vibrating device in the one phase (R phase) and ignition possibility was analyzed along the condition of current value by adding cotton material to the contact point of wiring. The ignition time is shortened as the electric current value increased, burning time is not associated with current value and the temperature rose up to $740^{\circ}C$ though it was not ignited. It was checked out that the temperature was the energy source enough that can generate the fire related with insulation aging of wiring and the inflammable. The possibility of electrical fire by series arc was shown as more than 12% at 5A, more than 42% at 20A and arc showed 27W at 5A, 180W at 20A. It was confirmed that the possibility of electrical fire exists at the condition as above and the circuit breaker did not operate. This data can be used as the reference value for the investigation of electrical fire or development of the circuit breaker.

A Study on Intelligent Technique for Correlation Application of Overcurrent and Leakage Current Signals in the Indoor Wiring (옥내배선에서 과전류와 누전 신호의 상관관계 적용을 위한 지능형 기법 연구)

  • Kim, Doo-Hyun;Kim, Eun-Jin;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.14-19
    • /
    • 2015
  • The purpose of this paper is to study the correlation application that electrical fire causes occurs for overcurrent and leakage current signals in the indoor wiring. In the order to purpose, the causes data of overcurrent, or leakage current of electrical fire are drawn out referring to past studies, consulting with experts and experimental data. The correlation application was then applied with fuzzy logic of intelligent technique. To check the reliability and performance of the correlation application, modified center of area(CoA) was adopted to calculate the possibility that electrical fire occurs, whose value was then compared to the results. The chance of electrical fire calculated is higher when two causes of fire are put into the CoA of the correlation application of this paper than that of when each cause is separately put into the CoA. The correlation application developed in this study enables better analysis on possible electrical fire due to overcurrent, or leakage current and provides managers with the possibility of electrical fire so that they can better manage at a time of overcurrent, or leakage current.

Analysis for Electrical Fire Possibility Using Fuzzy Logic with Input Variables of Overcurrent and Saturation Time in the Indoor Wiring (전기배선에서 과전류와 포화시간을 입력변수로 갖는 퍼지기반 전기화재가능성 분석)

  • Kim, Eun-Jin;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • The study is aimed to develop fuzzy logic system that has overcurrent and saturation time as input variable and possibility of electrical fire as output variable by making bad conductor area with physical damage to indoor wiring. Most previous studies focused on thermal characteristics depending on the current size and no study considered the current size and saturation time at the same time. Therefore, the paper made into account current value and saturation time together. To this end, it created bad conductor area half the size of IV conductor (1.6 mm) on purpose and transmit electrical current from 10A to 60A by unit of 2A to find out the thermal characteristics and saturation time for current. Based on the data that came out, the study applied fuzzy logic and established the current and saturation time as input variable and chance of fire as output variable. As a result, the center of area of the system that depended only on the existing current value was 75 while the system that applied both current and saturation time presented the chance of fire at 92. It is found that the chance of bad conductor area and deteriorated insulation of electrical wire had current and saturation time as important variables. The data can be used as basic data like deteriorated wire insulation or operation features of circuit breaker in investigating the cause of electrical fire.

A Study on the Fire Detection Algorithm for Early Fire Detection of Electrical Fire (전기화재 조기감지를 위한 화재감지알고리즘 연구)

  • Lee, Bock-Young;Park, Sang-Tae;Hong, Sung-Ho;Baek, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2164.1_2165.1
    • /
    • 2009
  • In this study we suggest fire detection algorithm using fuzzy inference with input variables of temperature and smoke density to detect electrical fire of early stage. The algorithm consists of membership function of temperature and smoke density and fire probability. The antecedent part of the algorithm consists of temperature and smoke density, and the consequent part consists of fire possibility. The inference rules of the algorithm is estimated to input temperature and smoke density obtained by real fire. With the help of algorithms using fuzzy inference we may be diagnose electrical fire precisely.

  • PDF

Electrical Fire Cause Diagnosis System Using a Knowledge Base

  • Lee, Jong-Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2007
  • For last several decades with the achievement of fast economic development, the electrical fires occupies over 30 percent of total fire incidents almost every year in Korea and not decreased in spite of much times and efforts. Electrical fire cause diagnostics are to confirm a cause for the fire by examination of fire scene. Cause diagnosis methods haven't been systematized yet, because of limits for available information, investigator's biased knowledge, etc. Therefore, in order to assist the investigators and to find out the exact causes of electrical fires, required is research for an electrical fire cause diagnosis system using DB, computer programming and some mathematical tools. The electrical fire cause diagnosis system has two functions of DB and electrical fire cause diagnosis. The cause diagnosis is conducted by a case-based reasoning on a case base and rule-based reasoning on a rule base. For the diagnosis with high reliability, a mixed reasoning approach of a case-based reasoning and fuzzy rule-based reasoning has been adopted. The electrical fire cause diagnosis system proposes the electrical fire causes inferred from the diagnosis processes, and possibility of the causes as well.

Development of Electrical Fire Detection System Applying Fuzzy Logic for Main Causes of Electrical Fire in Traditional Market Shops

  • Kim, Doo Hyun;Hwang, Dong Kyu;Kim, Sung Chul;Kim, Sang Ryull;Kim, Yoon Bok
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • This paper is aimed to develop an electrical fire detection system (EFDS) which can analyze the possibility of electrical fire for overcurrent, leakage current and arc signals of panel board in traditional market shop. The EFDS adopted fuzzy logic and precursory data for overcurrent, leakage current and arc signals to evaluate the possibility of electrical fire. The signals are obtained directly from panel board in traditional market shops and fuzzy membership function is obtained from experiment, simulation, expert's advice. The overcurrent data is acquired by thermal data of normal and abnormal states (partial disconnection) on the insulated electrical wire, in accordance with the increase of the current signal, The leakage current data is obtained under various environments. The arc signal is acquisited by waveforms of instantaneous value in time domain and frequency band in frequency domain. The Fuzzy algorithm for DB of EFDS consists of fuzzification, inference engine by Mamdani's method and defuzzification by center of gravity method. In order to verify the performance and reliability of EFDS, it was applied to Jeon-Ju traditional market shops (90 shops) in Korea. Results show that EFDS in this paper is useful in alarming the fire case, which will prevent severe damage to human beings and properties, and reduce the electrical fires in a vulnerable area of electrical disaster.

Study on the Possibility of Car Fire by Arbitrary Electrical Wiring (자동차 임의배선에 의한 화재발생 가능성 연구)

  • Kim, Min;Yoon, Jang-Soo
    • Congress of the korean instutite of fire investigation
    • /
    • 2010.12a
    • /
    • pp.91-119
    • /
    • 2010
  • There is an increasing number of car fires along with the increasing numbers of cars. The purpose of this study was to verify the possibility of fires caused by car tuning, which is one of the causes of car fires. The result showed that the possibility of car fires was increased by car tuning including replacement of headlights, excess of allowable current of wires or fuses by using multi cigar jacks, wire damage, earth fault, and vulnerability of wires and cables (sold in auto parts stores) to heat.

  • PDF

A Study on the Possibility of Electrical Fires due to the Short Circuit and Ground Fault of Power Cable Supported by an Iron Fence (철제펜스로 지지된 동력배선의 단락.지락에 의한 전기화재 발생 개연성 연구)

  • Kim, Jeong-Hun;Park, Byoung-Ki;Song, Jong-Hyeok;Jung, Ki-Chang
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.41-45
    • /
    • 2007
  • Short circuit and ground fault account for the primary causes of electrical fires. In this research, real-scale experiments were conducted to assess the possibility of electrical fires due to these causes. The experiment conditions were identical with an actual fire accident, in which the power cable was supported by an iron fence. The purposes of this research are to investigate the short circuit caused by wire cutting, the conductivity of the iron fence depending on its coating conditions, and the ground fault of one wire or two wires in an effort to reconstruct the fire accident. The test results show that, owing to the instant operation of circuit breaker in the moment of short circuit or ground fault, the generated ignition energy is far less than necessary to start an ignition. Therefore it is concluded that electrical fire is highly unlikely if the electric system is protected by a circuit breaker with normal functions.

A Study on Fire Investigation Technique For Single Line to Ground Faults in Distribution Line Using EMTP Simulation (EMTP 시뮬레이션을 통한 배전선로의 1선 지락 사고시 화재 조사 기법에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hie Sik;Lee, Hoon Gi;Cho, Yong Sun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • Approximately 20% of the total fire is electrical fire, and electrical energy is a potential source of heat. Large-scale fault currents that occur during a line ground fault flow into electric utility poles, electric power equipment, or electric appliances of the customer, and cause simultaneous electrical fire. In this paper, we investigated the possibility of fire through the change of fault current flowing in faulty and sound feeder in case of 1 line ground fault in 22.9 kV distribution line. We propose a fire investigation analysis method for simultaneous multiple electrical fire such as evidence analysis method, and fault current occurrence confirmation method in case of fire accident by analyzing the fault current occurring in the ground fault in the distribution line using EMTP, electric power system analysis program.

A Study on the Evaluation of Reliability of the Vacuum Circuit Breaker for the Electrical Fire (전기화재에 따른 진공차단기의 건전성 평가)

  • Choi, Hong-Kyoo;Park, Joon-Yeol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.24-28
    • /
    • 2013
  • Fire-hited electrical equipment has possibility of deterioration. So its replacement is essential in terms of safety. However, the economic burden is increased. Therefore, the replacement or re-use of it is to be determined by tests. But the research of Integrity Assessment on Fire-hited electrical equipments is very rare. In this paper, we tested to determine the replacement or re-use of Fire-hited vacuum circuit breaker. And provided the data for the integrity assessment through the analysis of its deterioration.