• 제목/요약/키워드: electrical conduction

검색결과 1,338건 처리시간 0.027초

유기 발광 다이오드의 온도에 따른 전도특성 (Characteristics of Electrical Conduction Mechanism of OLED with Various Temperature)

  • 이동규;김태완;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.197-200
    • /
    • 2005
  • We have studied conduction mechanism that is interpreted in terms of space charge limited current (SCLC) region and tunneling region. The OLEDs are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris (8-hydroxyquinolinoline) aluminum(III) $(Alq_3)$ as an electron injection and transport and emitting layer. We manufactured reference structure that has in $ITO/TPD/Alq_3/Al$. Buffer layer effects were compared to reference structure. And we have analyzed out electrical conduction mechanism in $ITO/Alq_3/Al$ device with various temperature.

  • PDF

A Study on the Electric Conduction Mechanism of Polyimide Ultra-Thin Films

  • Jeong, Soon-Wook;Park, Won-Woo;Lee, Sang-Jae
    • 한국응용과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.238-242
    • /
    • 2006
  • Polyimide is a well-known organic dielectric material, which has not only high chemical and thermal stability but also good electrical insulating and mechanical properties. In this research, the electric conduction mechanism of PI Ultra-Thin Films was investigated at room temperature. At low electric field, ohmic conduction $(I{\propto}V)$ was observed and the calculated electrical conductivity was about $4.23{\times}10^{-15}{\sim}9.81{\times}10^{-15}\;S/cm$. At high electric field, nonohmic conduction $(I{\propto}V^2)$ was observed and the conduction mechanism was explained by space charge limited region effect. The dielectric constant of PI Ultra-Thin Films was about 7.0.

비정질 Sb-Bi-Te 박막의 전기적 특성에 관한 연구 (A Study on the Electrical Properties of Amorphous Sb-Bi-Te Thin Films)

  • 이준신;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.220-226
    • /
    • 2002
  • Amorphous $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5 and 1.0) thin films were prepared by vacuum evaporation. The resistivity of 7he films decreases from 1.4{\times}10^{-2}$ to $8.84{\times}10^{-5}\Omega cm$ and the type of conductivity changes from p to n with the increase of the x value of the films. D.C. conduction studies on these films ate performed at various electric fields in the temperature range of 303-403 K. At low electric fields, two types of conduction mechanisms, i.e. the variable range hopping and the phonon assisted hopping are found to be responsible for the conduction, depending upon the temperature. The activation energy decreases from 0.082 to 0.076 eV in the temperature range of 303-363 K and from 0.47-0.456 eV in the second range of 363-403 K, indicating the shift of the Fermi level towards the conduction band edge and hence the change of the conduction from P to n type with the increase of the Bi concentration. Poole-Frankel emission dominates at high fields. The shape of the potential well of the localized centre is deduced and the mean free path of the charge carriers is also calculated.

전도냉각형 고온초전도 에너지저장장치의 전기적 특성 (A Study on the Electrical Properties of the Conduction-cooled HTS SMES System)

  • 최재형;곽동순;천현권;김해종;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.135-141
    • /
    • 2007
  • The conduction-cooled HTS SMES is operated in cryogenic and high vacuum condition. Thus, Insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction-cooled HTS SMES. Therefore, in this study, we experimented about insulation characteristic high vacuum and cryogenic similar to driving condition of SMES system. Also, investigated about insulation characteristic of suitable some materials to insulator for conduction-cooled HTS SMES. As this results, we possessed basis data for insulation materials selection and insulation design for development of 600 kJ class conduction-cooled HTS SMES.

A Magnetically Coupled AC/DC Boost Converter with Low Reverse Recovery and Conduction Losses

  • Kim, Ju-Young;Park, Ki-Bum;Moon, Gun-Woo;Youn, Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.391-393
    • /
    • 2008
  • A modified boost converter with magnetic coupling is presented to reduce the reverse recovery loss while maintaining low conduction loss of the rectifiers. By utilizing a coupled inductor and a set of diodes, the current passing the boost rectifier is transferred to an auxiliary loop before turn-off, allowing low di/dt for reduced recovery loss. Moreover, the boost inductor is brought inside the bridge rectifier to reduce conduction loss by decreasing the number of conducting diodes during switch turn-off. Experimental results of a 500W prototype are provided to verify the increase in efficiency and validity of the proposed converter.

  • PDF

Polyimide(PI)LB막의 MIM구조 소자내에서의 switching전도특성 (Switching conduction characteristics of PI LB Film in MIM junctions)

  • 김태성;김현종
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권2호
    • /
    • pp.176-183
    • /
    • 1995
  • The present work is concerned with the switching conduction characteristics of PI LB films in metal insulator metal sandwiches. By applying various DC voltage bias to MIM junctions, conduction characteristics of junctions can be changed between the high-voltage low-current(off) condition, the low-voltage high-current (on) condition and the medium(mid) condition. Switching conduction characteristics can be also observed in MIM junctions employing some aromatic compounds as insulators. Switching conduction characteristics is assumed to be owing to the existence of aromatic rings, space charge in films, impurities on metal-insulator interface, and difference in work functions of base and top electrodes metal. To study the conduction process of on, off, and mid conductions, we measured I-V, d$^{2}$V/d I$^{2}$-V characteristics of junctions with several different top electrodes under various temperatures. Small conductance changes of junctions can be measured by observing the second derivative, d$^{2}$V/dI$^{2}$, of I-V curve. A dynamical technique is used to get the second derivatives. That is, a finite modulation of the current is applied to the junctions and the second harmonic of the voltage is detected.

  • PDF

$SiO_2-Al_2O_3-B_2O_3-RO-Na_2O$계 유리의 전지저항에 미치는 수식체의 영향 (Effect of Modifiers on the Electrical Resistivity of $SiO_2-Al_2O_3-B_2O_3-RO-Na_2O$ Glasses)

  • 김대기;김철영
    • 한국세라믹학회지
    • /
    • 제33권4호
    • /
    • pp.385-390
    • /
    • 1996
  • The electrical resistivity of the ceramic glaze coated on ceramic substrate plays an important role on the characteristics of the thick and thin film electrical circuits. In this study the effects of the various modifiers on the electrical resistivity were examined in SiO2-Al2O3-B2O3-RO-Na2O (RO=CaO , SrO, BaO, PbO) glass system. In alkali free glasses where divalent cations are responsible for electrical conduction the electrical conductivity of th glasses increased with the ionic size of divalent cations due to the decrease in the bond strength between oxyben and divalent cation. In Na2O containing glasses however where Na+ ion is responsible for electrical conduction the ionic conductivity decreased with the ionic size of divalent cations because the blocking effect of the cations on Na+ ion movement increased with larger divalent cations. Na+ ionic conduction also depended on the glass structure relaxation due to the corrdination number changes of B2O3 and Al2O3 which varied with the NaO2 content in the glass.

  • PDF

Change in Autonomic Nerve Responses after Low-frequency Transcutaneous Electrical Nerve Stimulation

  • Lee, Jeong-Woo;Park, Ah-Rong;Hwang, Tae-Yeon
    • The Journal of Korean Physical Therapy
    • /
    • 제22권6호
    • /
    • pp.71-76
    • /
    • 2010
  • Purpose: The purpose of this study was to examine changes in autonomic nerve responses after low-frequency transcutaneous electrical nerve stimulation (TENS). Methods: Research subjects were 24 students who attend University. Subjects were divided into two groups: 1 = a low intensity group; 2 = a high intensity group. Electrodes were attached to the forearm of the dominant arm and electrical stimuli were administered for 15 minutes. Outcome measures were skin conduction velocity, skin temperature, blood flow, and pulse frequency, each of which was measured a total of 4 times. The data were analyzed using a repeated measures ANOVA. Results: In changes in conduction velocity, the main effect of time variation (in black) was statistically significant. The interaction between time and group main effects was not statistically significant; nor was the difference between the groups. Results showed that skin conduction velocity changed without any relation to group. Conclusions: Low frequency TENS selectively increases skin conduction velocity, which may be helpful for activating sudomotor function regardless of intensity.

고전계와 저전계에서 천연고무의 전기전도기구 (Natural Rubber Electrical Conduction Mechanism in High and Low Electric Fields)

  • 윤주호;최용성;문종대;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.307-308
    • /
    • 2007
  • This work shows the experimental results obtained from ageing at a temperature of 100 C for 48, 70 and 312 h, although the application of AC electrical tension in samples and the measuring of current leakage are presented. The measurements in samples were carried out with samples prepared from the deformulated commercial materials and respectively reformulated into thin films. The obtained results showed the mechanisms of conduction of samples in low and high electric fields. It was also identified an electric tension transition showing that in low fields it prevails the Ohm's law conduction, and in high electric fields it prevails the conduction of space charge limited current (SCLC). These results can support the natural rubber formulation process having as their main objective the reducing of the mechanisms that occur under high conduction current in high electric fields, which leads the material to a dielectric breakdown. Raw Natural rubber in Brazil is extracted from rubber trees (Hevea brasiliensis) in farms in So Paulo State by using some new plantation technology in smaller spaces, with trees placed a few meters from each other. In the Amazon rain forest the rubber trees are found naturally and their spacing may be of hundreds of meters or even kilometers between them. It is necessary to research this raw material from different internationally standard clones to characterize dielectric and electric properties for industrial applications. Moreover, this natural material has a low commercial price when compared to the synthetic ones.

  • PDF

XLPE 절연케이블내 금속성 불순물이 절연파괴에 미치는 영향 (Effects of Dielectric Breakdown in XLPE Insulation Cables by Metal Impurities)

  • 이우선;최창주;정용호;김남오;김정구;김상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1196-1198
    • /
    • 1997
  • In this work, simultaneous measurement such as change distribution and electrical conduction of maleic anhydride grafted XLPE was investigated. Heterocharge was found in XLPE and it decreased with increasing MAR graft ratio in XLPE-g-MAH. Conduction currents also decreased with increasing MAR graft ratio. The relationship between the space change behavior and the electrical conduction characteristics in XLPE-g-MAH is discussed.

  • PDF