• Title/Summary/Keyword: electric-field optical sensor

Search Result 48, Processing Time 0.029 seconds

A Possible Application of the Nonuniform Electric Field Measurement Using Laser Interferometer and Pockels Effect (레이저 간섭계와 포켈스 효과를 이용한 불평등 전계 측정)

  • Gang, Won-Jong;Gu, Ja-Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.240-245
    • /
    • 2002
  • In this paper, a novel optical measuring system for the measurement of nonuniform electric field was proposed. The electric field distorted by the discharges was detected through proposed optical measuring system based on the Pockets effect and Mach-Zehnder interferometer. In order to produce distorted electric field, corona discharge was generated from needle-plane electrode in air and detected by optical measuring system. This optical measuring system is constructed by He-Ne laser, single mode optical fiber, $2{\times}2$ 50/50 beam splitter, $LiNbO_3$ Pockets cell, photo detector and PC. In this system, output signal of Pockels sensor is measured by digital oscilloscope and transferred to the PC for recording and statistical processing. Through this paper, a promising possibilities of proto-type optical measuring system were evinced.

Optical Current Measuring System for Compensating Interference by Adjacent Electric Wires

  • Cho, Jae-Kyong
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.156-160
    • /
    • 2007
  • In this paper, we analyze the errors associated with magnetic field interference for fiber-optic current sensors working in a three-phase electric system and provide a solution to compensate the interference. For many practical conductor arrangements, the magnetic filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of ${\pm}1%$.

A Study on the Fabrication of Integrated Optical Electric-Field Sensor and Performance utilizing Asymmetric $Ti:LiNbO_3$ Mach-Zehnder Interferometer (비대칭 $Ti:LiNbO_3$ Mach-Zehnder 간섭기를 이용한 집적광학 전계센서 제작 및 성능에 관한 연구)

  • Ha, Jeongho;Jung, Hongsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.128-134
    • /
    • 2012
  • The performance evaluation and fabrication of integrated-optic electric-field sensor utilizing $Ti:LiNbO_3$ asymmetric Mach-Zehnder intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1\;mm$ and operates at a wavelength $1.3{\mu}m$. The devices are simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides. The minimum detectable electric field is 1.02 V/m and 6.91 V/m, corresponding to a dynamic range of ~35 dB and ~10 dB at the frequencies of 500 KHz and 5 MHz, respectively.

Compensation of Electric Field Interference for Fiber-optic Voltage Measurement System

  • Cho, Jae-Kyong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2008
  • In this paper, we analyze the errors associated with electric field interference for fiber-optic voltage sensors working in a three-phase electric system. For many practical conductor arrangements, the electric filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of 1 %.

Developments of Extremely Low Frequency Electric Field Sensor using Guided-wave Optical Modulator (광도파로형 초저주파(ELF) 전계계측 센서의 개발)

  • Choe, Yeong-Gyu;Kim, Mun-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.1-7
    • /
    • 2002
  • The use of an asymmetric Mach-Zehnder interferometric amplitude modulator to measure a relatively low frequency electric field strength is described. The sensitivity of an electric field sensor using a Ti:LiNbO$_3$ optical modulator is strongly affected by the shape of a electrode(probe antenna). To measure the low frequency electric field, a probe antenna of wide effective area is more useful than the usual dipole antenna. As a proof of this, the optical modulator was fabricated with a plate-type probe antenna and the usefulness of this antenna tested for measuring low frequency electric field strength. Measurements were performed in the range 0.1V/cm to 60V/cm at 60Hz through 100KHz. Using a probe antenna of 10mm$\times$10mm, the output voltage of 10㎷ was measured with respect to the electric field strength of 0.1V/cm at 60Hz. By increasing the effective area of the probe antenna, better sensitivity is obtainable over the measured range.

A new, hybrid, heterodyne, fiber-optic electric field sensor scheme and its applications (I/Q 변조 풀이 방식의 헤테로다인 간섭계를 이용한 미소 전기장 및 복굴절 측정)

  • 윤신영;조규만;이용산
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.161-164
    • /
    • 1997
  • A new hybrid, heterodyne, fiber-optic electric field sensor scheme is presented. In this scheme, a dual polarization, dual frequency, stabilized He-Ne laser is used for the light source of the interferometer, Probe beam is delivered to the sensor head using polarization maintaining fiber. In the sensor head, $LiTaO_3$ electro-optic crystal is used for sensing element. Phase retardation is induced on the dual frquency, dual polarization probe beam due to applied electric field across the crystal. Induced phase retardation is demodulated by in-phase and quadrature demodulation technique. In this way, we can obtain optimum sensitivity for electric field measurement regardless a quasi-static phase difference between two polarization components.

  • PDF

Measurement of High Electric Field Using Linear Electric-Optic Effect of Crystalline SiO$_2$ (SiO$_2$의 전기 광학 효과를 이용한 고전계 측정)

  • 김요희;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.2
    • /
    • pp.142-152
    • /
    • 1992
  • This paper presentes a new method to measure high electric field (or high voltage) by using crystalline SiO2 which has very high half wave voltage. There are many difficulties in measuring high electric field using other crystals which have generally low half wave voltage.By applying Stokes parameter and Mueller matrix. We derive optical modulation equation in the sensor which is composed of a polarizer, and Mueller matrix, we derive optical modulation equation in the sensor which is composed of a polarizer, a Pokels material, and an analyzer, We theoretically analyzed electro-optic effect, and calculated the phase retardation and half wave volt age of the birefringent material. The designed optical valtage sensor has very excellent linearity up to 20KV without divided volt-age. The maximum error was measured within 3%. Before annealing of Sio2 crystal, the maximum variation of the output voltage is 7.5% with varying temperature from \ulcorner20˚c to 60˚c. But, after annealing of SiO2 crystal, the output voltage variation is improved within 1%error.

  • PDF

Fiber optic interferometric electric field sensor with La-doped PMN/PT PMN/PT[0.9 Pb$(Mg_{1/3}Nb_{2/3})O_3-0.1\;PbTiO_3$] electrostrictive ceramics (PMN/PT[0.9 Pb$(Mg_{1/3}Nb_{2/3})O_3-0.1\;PbTiO_3$에 La이 첨가된 광섬유 전왜변환기를 이용한 간섭계형 광섬유 전계센서의 특성분석)

  • 강원석;이영탁;강현서;정래성;이경식;장현명
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.162-166
    • /
    • 1996
  • We report a fiber optic interferometric electric field sensor that utilizes electrostrictive ceramics-1%, 2%, 3%, La-doped 0.9MN/0.1PT, respectively-as the transducing elements. It is also experimentally observed that 3% La-doped PMN/PT among the three elements has the largest electrostrictive coefficient $M=3.87{\times}10^ {-16}(m/V)^2$ at 3.38 kHz and displays small hysteresis. The optical fiber sensor with the 3% La-doped PMN/PT exhibits minimum detectable field of 2.08(V/m)/ $\sqrt{Hz}$ and has a good linearity over the dynamic range 40 dB.

  • PDF

A possible non-contact measuring technique for the variation of the electric field due to corona discharge by use of Pockels sensor (포켈스센서를 이용한 코로나방전 발생시의 전계변화 측정에 관한 연구)

  • Ma, Ji-Hoon;Kang, Won-Jong;Lim, Yun-Sok;Choi, Jae-Ok;Chang, Yong-Moo;Koo, Ja-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.189-192
    • /
    • 2001
  • In this paper, an novel optical measuring system based on the electro-optic effect has been proposed and realized using Pockels cell with a view to detecting partial discharge taking place at the needle plane electrode. This system has the following advantages ; nonmetallic probe sensor, immune to external EMI noise and broad band response of the Pockels cell from DC to GHz. This system is constructed by He-Ne laser, Mach-Zehnder interferometer with Pockels sensor, balanced photo receiver, data acquisition board and PC. The response characteristics of the developed proto type sensor are examined for AC and corona discharge.

  • PDF