• Title/Summary/Keyword: electric regeneration

Search Result 110, Processing Time 0.027 seconds

Characteristic Analysis of Flyback Type ZVS PWM DC-DC Converter Using Passive Resonant Snubber (패시브 공진 스너버를 이용한 플라이백형 ZVS PWM DC-DC 컨버터의 특성해석)

  • Kim, Jung-Do;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • In this paper, a high frequency flyback type zero voltage soft switching PWM DC-DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of active power switches and a flyback high frequency transformer. In addition to these, passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three winding auxiliary high frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC-DC converter from an experimental point of view and the comparative electromagnetic conduction and radiation noise characteristics of both DC-DC power converter circuits are also depicted.

Induction of Myogenic Differentiation in Myoblasts by Electrical Stimulation

  • Je, Hyeon-Jeong;Kim, Min-Gu;Cho, Il-Hoon;Kwon, Hyuck-Joon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.2
    • /
    • pp.63-70
    • /
    • 2019
  • PURPOSE: While electrical stimulation (ES) is known to be a safe and flexible tool in rehabilitation therapy, it has had limited adoption in muscle regeneration. This study was performed to investigate whether ES can induce myogenic differentiation and to clarify the mechanism underlying the effects of ES on myogenic differentiation. METHODS: This study used rat L6 cell lines as myoblasts for myogenic differentiation. Electric stimulation was applied to the cells using a C-Pace EP culture pacer (IonOptix, Westwood, Ma, USA). The gene expressions of myogenic markers were examined using qPCR and immunochemistry. RESULTS: Our study showed that ES increased the thickness and length of myotubes during myogenic differentiation. It was found that ES increased the expression of myogenic markers, such as MyoD and Myogenin, and also activated the fusion of the myoblast cells. In addition, ES suppressed the expression of small GTPases, which can explain why ES promotes myogenic differentiation. CONCLUSION: We found that ES induced myogenic differentiation by suppressing small GTPases, inhibiting cell division. We suggest that ES-based therapies can contribute to the development of safe and efficient muscle regeneration.

A Study on Electrochemical Regeneration of Waste Iron-chloride Etchant and Copper Recovery (전기화학 반응에 의한 염화철 폐식각액의 재생 및 구리 회수에 관한 연구)

  • Kim, Seong-En;Lee, Sang-Lin;Kang, Sin-Choon;Kim, I-Cheol;Sheikh, Rizwan;Park, Yeung-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.183-190
    • /
    • 2012
  • Electrochemical regeneration of the iron chloride waste solution from PCB etching reduces environmental contamination and produces copper as by-product, so the economic feasibility is high. But iron chloride waste solution contains iron and copper and the reactions occurring in the electrolytic cell are complicated. In this work, the oxidation of iron chloride and copper deposition were examined through batch electrolysis and the optimum conditions of the process parameters were found. The oxidation of ferrous chloride was achieved easily to the desired level. The copper deposition efficiency was high in the reaction using the carbon cathode when the copper density was 12 g/L with the electric current density of $350mA/cm^2$, and the ratio of the $Fe^{2+}$ ion was high. In addition, the possibility of the scale-up was confirmed in continuous operation of bench reactor using the optimum conditions obtained.

Comparison of Regeneration Effects of Direct and Alternating Microcurrent Therapy on Atrophied Calf Muscle in a Rabbit (비복근 위축 토끼 모델에서 직류 및 교류 미세전류의 근육 재생 효과 비교)

  • Kim, Dong Han;Kwon, Dong Rak;Moon, Yong Suk
    • Clinical Pain
    • /
    • v.19 no.2
    • /
    • pp.80-89
    • /
    • 2020
  • Objective: We compared the regenerative effects of microcurrent therapy (MT) according to the type of electric current, which were direct current microcurrent therapy (DCMT) and alternating current microcurrent therapy (ACMT) on atrophied calf muscle in cast-immobilized rabbit. Method: Rabbits were allocated into control group (sham MT), ACMT group, and DCMT group. Before starting treatment, right gastrocnemius (GCM) muscle was immobilized by cast for 2 weeks. Compound muscle action potential of tibial nerve in nerve conduction study, circumference of calf muscle using a ruler, and thickness of medial and lateral GCM muscle measured by ultrasound, cross sectional area (CSA), and proliferating cell nuclear antigen (PCNA) ratios (%) of muscle fibers were measured on the immunohistochemical analysis. Results: The mean atrophic changes (%) in right medial and lateral GCM muscle thickness, right calf circumference, and amplitude of CMAP of the right tibial nerve in ACMT group and DCMT group were significantly lower than those in control group, respectively (p<0.05). The mean CSA (μm2) of type I and type II and PCNA ratios (%) of medial and lateral GCM muscle fibers in ACMT group and DCMT group were significantly greater than those in control group, respectively (p<0.05). There were no significant differences between the ACMT group and DCMT group at all parameters. Conclusion: This study demonstrated that ACMT and DCMT showed better regeneration effect than sham MT. Microcurrent may be effective in regeneration of atrophied muscle regardless of the type of current.

Analysis of Influence Factors of Interaction on the Electric Power of Microbial Fuel Cell (미생물연료전지가 전력생산에 영향을 미치는 요인들에 대한 상호관계 분석)

  • Lee, Song-Keun;Kim, Il-Ju;Lee, Kyu-Hwa;Yoo, Kyu-Seon;Song, Young-Chae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.169-175
    • /
    • 2009
  • Microbial fuel cell (MFC) is a device to produce a electricity from the oxidation of organic materials using microorganism. Recently many researchers have been studying MFC which is focused as regeneration energy source. Previews studies have focused every each factor that influence the production of electric power. However they didn't study a lot about the correlation among the factors. In order to improve the MFC, we analysed the factors which influencing the generation of electric power of MFC. Also, we made a new compartment to verify the correlations among the factors efficiently. Based on the result obtained from the experiments in the laboratory, we analysed the factors and we suggested a new concept of waste water treatment system to produce electrical energy during the treatment of waste water.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron (과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화)

  • Kim, Cheolyong;Ahn, Jun-Young;Kim, Tae Yoo;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.17-25
    • /
    • 2017
  • The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.

DC-DC Converter for Integrated Voltage Control Method (전압 적분 제어법에 의한 DC-DC 컨버터)

  • 이현우;서기영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1590-1597
    • /
    • 1993
  • Power conversion system generally requires bidirectional converter. A storage energy of reactor is suppressed by regeneration of surplus electic energy in converter to power source. When an electric isolation in the power conversion system is required. the most suitable position for the isolation is the DC-Link part. A transformer in the DC part is minimized because of high repetition frequency. This paper proposes that power conversion system becomes bidirectional DC-DC converter with electric isolation by intergrated voltage control method. It is intergrated voltage control that makes system construciton simple, has control errow little quantity ans gets output response Quick. And the power-switches which should be operated is selected automatically without a detection of the current-direction.

  • PDF

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

A study on the Chopper Control System of Electroic Vehicle (전기자동차의 쵸퍼제어 방식)

  • Chung, Y.T.;Han, K.H.;Kim, Y.J.;Lee, S.H.;Kim, D.G.;Lee, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1182-1184
    • /
    • 1992
  • In case of chopper control is used for the d.c motor In the electric vehicle(EV) in general step down chopper is used for the driving and the step-up chopper is used for the regeneration. Bilateral variable ratio chopper system(BVRCS) formed by parallel combination of upper two chopper methods step-down, step-up and step-up/down chopper operations by duty cycle, circuit element and driving condition. In this paper, BVRCS is proposed for the simulated and experimented control of d.c motor in the EV. By the result of simulation BVRCS represents same driving power compared to the step-down and excellent breaking power compared to the step-up chopper system because of the greater motor current.

  • PDF