• Title/Summary/Keyword: electric propulsion

Search Result 435, Processing Time 0.025 seconds

A Trend of the Technical Development of Electric Propulsion Systems for Ships (선박용 전기추진시스템의 기술개발 동향)

  • Park, J.T.;Lee, K.J.;Jang, S.Y.;Lee, K.J.;Kim, J.K.;Cho, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.958-960
    • /
    • 2000
  • In this material, the characteristics and types of the electric propulsions for ships are examined and compared. And a trend on the technical developments of electric propulsion systems for ships are examined. So, this material will be a few helpful in researching and developing the electric propulsions for ships.

  • PDF

Harmonic Reduction of Electric Propulsion System by Current Injection (전류주입에 의한 전기추진시스템의 고조파 저감)

  • Kim, Jong-Su;Han, Won-Hui;Seo, Dong-Hoan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.360-364
    • /
    • 2012
  • AC to DC converter that consists of relatively simple diode rectifier devices has been widely used in the field of the electric propulsion system. Also, since this rectifier includes large harmonics in the input current, a variety of researches have been developed to reduce the harmonics. The proposed method of this paper is to reduce the harmonics included in the input current of rectifiers and propulsion motor by injecting the output current of diode rectifier into the input of them. In addition, the proposed method ensures electrical safety through the respective isolation of the injection current, the source, and the loads using the Wye-Delta insulating transformer applied in current injection device that is installed in the input circuit of rectifiers and propulsion motor. The proposed method is simulated by applying to the electric propulsion ship that is currently operating. We confirm the validity of the proposed method compared with conventional power conversion system.

Harmonic Reduction of Electric Propulsion Ship by Multipulse Drive (다중펄스 드라이브에 의한 전기추진선박의 고조파 저감)

  • Kim, Jong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.425-431
    • /
    • 2011
  • The harmonic distortion level may be significant in electric propulsion systems, as the main loads usually are variable speed propulsion/thruster drives. Distortion of currents and supply voltage waveforms may lead to: Increased power dissipation(losses) in equipment connected to the network, such as generators, motors, transformers, cables, etc., from the harmonic currents, may cause overheating and deterioration of the insulation, and reduced life time of the equipment. In this paper introduced the canceling method of harmonic currents by a multipulse drive with phase shifting transformer. The simulation results indicated a good speed response to the middle speed range of electric propulsion motor. And also, THD(total harmonic distortion) and torque ripple could be reduced in comparing the 12-pulse drive with 6-pulse drive.

Development of Sub-200 W Laboratory Model Hall Thrusters for Small and Micro Satellites (소형 및 초소형위성 활용을 위한 200 W 이하 저전력 홀 전기추력기 랩모델 연구개발)

  • Lee, Dongho;Kim, Holak;Doh, Guentae;Kim, Youngho;Park, Jaehong;Lee, Jaejun;Choe, Wonho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.40-46
    • /
    • 2022
  • Hall thrusters are one of the electric propulsion, where ions are accelerated to generate thrust and are widely utilized in space missions due to their high specific impulses. Recently, as the utilization of small and micro satellites with the mass of similar or less than 100 kg is highly increasing, the importance of research and development of the low-power electric propulsion is also raised. In this study, we developed two sub-200 W or less class, laboratory model Hall thrusters and measured the thrust and analyzed the discharge characteristics. Consequently, we obtained 2.5-9.0 mN of thrust, 600-1,150 s of specific impulse, and 15-28% of anode efficiency at 50-175 W of anode power.

Study on Production of Power Monitoring Unit for Electric Propulsion UAV (전기동력 무인항공기용 PMU의 개선 및 제작에 대한 연구)

  • Kang, Jin-Myeong;Jeong, Jin-Seok;Kang, Beom-Soo;Kim, Jang-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • This paper describes the design and implementation of previously developed PMU (Power Monitoring Unit) for LiPB (Lithium-ion Polymer Battery) that is electric propulsion used as unmanned aerial vehicle's power source. Improved PMU provides stable voltage and current to various sensors and elctric motors necessary during flight. Voltage and current monitoring function that is measured by improved PMU more precisely be enhanced and the monitoring channel and temperature sensor is added. To verify the improved performance of the equipment, it is integrated to electric propulsion system of unmanned aerial vehicle. PMU is calibrated through the ground test. And PMU's performance is checked through the flight test.

Power Characteristic Variation Simulation of Hybrid Electric Propulsion System for Small UAV (소형 무인기용 하이브리드 전기추진시스템 전력 특성변화 시뮬레이션)

  • Lee, Bo-Hwa;Park, Poo-Min;Kim, Chun-Taek;Yang, Soo-Seok;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1052-1059
    • /
    • 2011
  • It is conducted that power characteristic variation simulation of electric propulsion system that uses fuel cells, solar cells and a battery as power sources. Combining each power source, 400W electric propulsion system have been modeled and verified. In result, without active control logic, it is confirmed that battery's power response is faster than other power sources at starting and transient condition, fuel cell and solar cell are a major electrical power during cruise condition. After completing flight, SOC is 24.2% at the winter solstice and is 93% at the summer solstice, It is revealed that active power control for sustaining proper SOC is necessary as a securing the system safety and effective power distribution.

Design interchangeable battery modules with spare cells for electrical propelled ship (전기추진선박에서 예비-셀을 이용한 자가 진단 기반의 배터리 관리 시스템 설계 및 구현)

  • Lee, Jong-Hak;Oh, Ji-Hyun;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.709-718
    • /
    • 2021
  • As regulations on environmental pollution of ships have been strengthened, interest in smart ships such as electric propulsion ships equipped with hybrid power systems is increasing. Since batteries used in electric propulsion ships have a larger capacity than batteries used in vehicles, the price is high and maintenance is considered important. The ship's battery is manufactured as an integral type and is managed by the battery management system, and the maintenance and repair of the battery is performed through the replacement of the battery. we design and implement a battery module and a control algorithm using pre-cell for easy battery management. In addition, a controller is designed to transmit the data necessary for the electric propulsion ship power system control to the power control system. When a battery to which the corresponding spare-cell is applied is used, the stability of the ship and the battery system is increased, and it can have an advantage in terms of maintenance and repair.

Comparison of DTC between two-level and three-level inverters for LV propulsion electric motor in ship (선박 추진용 저압 전동기에 대한 2레벨 및 3레벨 인버터의 직접토크제어 비교)

  • Ki-Tak RYU;Jong-Phil KIM;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • In compliance with environmental regulations at sea and the introduction of unmanned autonomous ships, electric propulsion ships are garnering significant attention. Induction machines used as propulsion electric motor (PEM) have maintenance advantages, but speed control is very complicated and difficult. One of the most commonly used techniques for speed control is DTC (direct torque control). DTC is simple in the reference frame transformation and the stator flux calculation. Meanwhile, two-level and three-level voltage source inverters (VSI) are predominantly used. The three-level VSI has more flexibility in voltage space vector selection compared to the two-level VSI. In this paper, speed is controlled using the DTC method based on the specifications of the PEM. The speed controller employs a PI controller with anti-windup functionality. In addition, the characteristics of the two-level VSI and three-level VSI are compared under identical conditions. It was confirmed through simulation that proper control of speed and torque has been achieved. In particular, the torque ripple was small and control was possible with a low DC voltage at low speed in the three-level VSI. The study confirmed that the application of DTC, using a three-level VSI, contributes to enhancing the system's response performance.

Introduction For Gas Turbine Electric Propulsion LNGC (GAS TURBINE ELECTRIC PROPULSION LNG선 소개)

  • Yeo, Dong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.27-28
    • /
    • 2006
  • 최근 LNG 연료 시장의 호황에 힘입어 LNG선들이 점차 대형화 추세에 있고, LNG선의 추진 기관 또한 경제성, 환경 영향 등의 주어진 요구 환경에 따라 다양화 되고 있다. 기존의 Steam Turbine Propulsion 외에 Conventional 2-stroke Diesel Engine 및 Dual-fuel 4-stroke Diesel Engine of LNG선의 주 기관으로서 이미 상용화 되었고, 기술적/경제적인 이유로 일반 상선의 주기관으로서는 논외에 있었던 Gas Turbine 또한 일부 Oil Major와 Gas Turbine Maker에 의해 그 적용 가능성이 논의되고 있다. 이에 따라 LNG 선에 Gas Turbine 적용 타당성, 고려 사항 및 적용에 따른 이점과 단점 등을 고찰하였다.

  • PDF