• Title/Summary/Keyword: electric pan

Search Result 74, Processing Time 0.024 seconds

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

Synthesis of Nitrogen-Doped Porous Carbon Fibers Derived from Coffee Waste and Their Electrochemical Application (커피 폐기물 기반의 질소가 포함된 다공성 탄소 섬유의 제조 및 전기화학적 응용)

  • Dong Hyun Kim;Min Sang Kim;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Chan-Gyo Kim;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • In this study, coffee waste was recycled into nitrogen-doped porous carbon fibers as an active material for high-energy EDLC (Electric Double Layer Capacitors). The coffee waste was mixed with polyvinylpyrrolidone and dissolved into dimethylformamide. The mixture was then electrospun to fabricate coffee waste-derived nanofibers (Bare-CWNF), and carbonization process was followed under a nitrogen atmosphere at 900℃. Similar to Bare-CWNF, the as-synthesized carbonized coffee waste-derived nanofibers (Carbonized-CWNF) maintained its fibrous form while preserving the composition of nitrogen. The electrochemical performance was analyzed for carbonized coffee waste (Carbonized-CW)-, carbonized PAN-derived nanofibers (Carbonized-PNF)-, and Carbonized-CWNF-based electrodes in the operating voltage window of -1.0-0.0V, Among the electrodes, Carbonized-CWNF-based electrodes exhibited the highest specific capacitance of 123.8F g-1 at 1A g-1 owing to presence of nitrogen and porous structure. As a result, nitrogen-contained porous carbon fibers synthesized from coffee waste showed excellent electrochemical performance as electrodes for high-energy EDLC. The experimental designed in this study successfully demonstrated the recycling of the coffee waste, one of the plant-based biomass that causes the environmental pollution into high-energy materials, also, attaining the ecofriendliness.

A Study on the Necessity of Introducing Evacuation Instrument in High-rise Buildings - Focusing on Elevator Type Evacuation Instrument - (고층건축물의 피난기구 도입 필요성에 관한 연구 - 승강식피난기를 중심으로 -)

  • Choi, Kyu-Chool;Ra, Pan-Ju;Seul, Yeong-Mi
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-19
    • /
    • 2014
  • The fast evacuation from fire floors to evacuation floors in high-rise building fires can minimize the human damage. In this study, an evacuation instrument, which are applicable to the high-rise buildings of adaptable escape mechanisms by the current NFSC 301 (national fire safety code 301), were selected to analyze the applicability in the high-rise buildings over 11th floor through the site adaptability test. The results of the site test were as follows. The elevator type evacuation instrument of new concept developed as a new technology by compensating the defect of evacuation instrument limiting in the high-rise buildings over 11th floor had completed the stability test and the performance certification test in fire stations, which there were no problems in the introduction of the elevator type evacuation instrument as an escape mechanism in the high-rise buildings. The elevator type evacuation instrument using escapers' weight without using electric power was an escape mechanism that many people could evacuate in a short period of time when a fire broke out in the high-rise buildings. In particular, The elevator type evacuation instrument operated by nonpower had the adaptability as a customized escape mechanism considering user characteristics in the buildings for the disabled or patients with an advanced disease.

A Study on the GEO-Tracking Algorithm of EOTS for the Construction of HILS system (HILS 시스템 구축을 위한 EOTS의 좌표지향 알고리즘 실험에 대한 연구)

  • Gyu-Chan Lee;Jeong-Won Kim;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.663-668
    • /
    • 2023
  • Recently it is very important to collect information such as enemy positions and facilities. To this end, unmanned aerial vehicles such as multicopters have been actively developed, and various mission equipment mounted on unmanned aerial vehicles have also been developed. The coordinate-oriented algorithm refers to an algorithm that calculates a gaze angle so that the mission equipment can fix the gaze at a desired coordinate or position. Flight data and GPS data were collected and simulated using Matlab for coordinate-oriented algorithms. In the simulation using only the coordinate data, the average Pan axis angle was about 0.42°, the Tilt axis was 0.003°~0.43°, and the relatively wide error was about 0.15° on average. As a result of converting this into the distance in the NE direction, the error distance in the N direction was about 2.23m on average, and the error distance in the E direction was about -1.22m on average. The simulation applying the actual flight data showed a result of about 19m@CEP. Therefore, we conducted a study on the self-error of coordinate-oriented algorithms in monitoring and information collection, which is the main task of EOTS, and confirmed that the quantitative target of 500m is satisfied with 30m@CEP, and showed that the desired coordinates can be directed.