• Title/Summary/Keyword: electric impedance

Search Result 586, Processing Time 0.023 seconds

The Analysis of the T-shaped Microstripline-Fed Printed Slot Antenna with Unidirectional Radiation (한방향 복사특성을 갖는 T-모양 급전선 마이크로스트립 슬롯 안테나의 해석)

  • Jang, Yong-Woong;Oh, Dong-Jin
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.103-109
    • /
    • 1999
  • In this paper, we proposed to a new structure of T-shaped fed microstrip slot antenna using 2-layers dielectric material with a directional radiation characteristic. When the slot antenna of bi-directional radiation want to radiate only one direction, the reflector must be set up, but this antenna does'nt need set up reflector. T-shaped microstrip feed line is proposed for a better impedance matching to the microstrip slot antenna in a various range of slot widths. It was also found that the bandwidth of this antenna is proportional to the slot width. It was also found that the radiation resistance of this feed line structure is quite constant and low regardless to the slot width. We also analyzed this antenna by using the FDTD method, and calculating waves and electric field distribution in the time domain. we also are calculated return loss, VSWR, and radiation pattern in the frequency domain by Fourier transforming the time domain results, respectively. From the measured results, bandwidth was 34.8% in the center frequency. These results were in relatively good accordance with the calculated values.

  • PDF

Design of Tag Antenna without Shadow Zone in Readable Pattern (인식 음영 구역을 제거한 RFID 태그 안테나 설계)

  • Cho, Chi-Hyun;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1206-1212
    • /
    • 2005
  • In this paper, we propose a novel antenna structure which uses the electric and magnetic currents so as to eliminate nulls on their radiation pattern. The tag antenna was matched to the conjugate impedance of the commercial tag chip using the modified double T matching network. The radiation efficiency is about $90\%$, and the bandwidth($S_{11}< -10 dB$) is 848${\~}$926 MHz. Also it shows the gain deviation between the maximum and minimum gains about 4 dB at any direction of the tag antenna at the operating frequency. The readable range of the tag is 1.7${\~}$2.4 m for an arbitrary rotation angle of the tag with a commercial tag chip.

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.

The High Power Active Filter System for Harmonic Compensation of 25kv Electric Railway (25kV 전기철도 고조파 보상을 위한 고전력 능동전력필터 시스템에 관한 연구)

  • Kim, Jae-Chul;Rho, Sung-Chan;Lee, Yoo-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.761-765
    • /
    • 2006
  • At present, harmonic currents cause serious problems in power conversion system using the semiconductor switching device. Also some of the conversion system provokes harmonic currents against to the main power supply system and causes hindrances for the system. Main power impedance of the traditional LC passive filter method, influences on the filter characteristics and amplifies the harmonics when resonance phenomenon is occurred. And the traditional existing 2 level inverter systems show the limit in capacity of voltage and current in case of occurring sudden load change. So, to solve this problem active filter which uses cascaded H-bridge multi level inverter has been designed and ex-filter system circuits were totally investigated. With multi level active filtering system not only the size of filter but also the size of filter for transformer can be reduced by half and so as to the weight, while the capacity of inverter can be double sized and wave forms can be compensated exactly and precisely. Also by the benefit of the increase in rating capacity, the various currents owing to the load fluctuation can be dealt more steadily. In order to simulate the wave form of harmonics based on the measured data on the AC 25kV high speed Domestic Commercial railway, it was simulated with PSCAD/EMTDC and PSIM. Based on the results of this demonstration, the power supply system and inverter system would be more stable and also promoting its efficiency.

Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline using 2-layer Dielectrics (2층 유전체를 사용한 십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 해석)

  • 장용웅;신호섭
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.69-74
    • /
    • 2000
  • The bandwidth of microstrip slot antenna with T-shaped feed line was a wider than one of the conventional feeding structure. When the slot antenna with bi-directional radiator wants to radiate only one direction, the reflector must be set up seperately. But this antenna doesn't need set up reflector. And then we proposed to a new method of a directional slot radiator with a cross-shaped feedline including the reflector using 2-layers dielectric materials. It is calculated waves and electric field distribution in the time domain by using FDTD method. We also are calculated return loss, VSWR, input impedance, and radiation pattern in the frequency domain by Fourier transforming the time domain results, respectively. It was found that the bandwidth of this antenna changes as length($\I_s$) and width($\W_s$) of slot, length of the horizontal feedline($\I_d$), length of the vertical feedline($\I_u$) and offset sensitively. After optimizing the parameters of design, the maximum bandwidth was measured as 1,850MHz at the center frequency 2.5 GHz.

  • PDF

Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

  • Chung, Y.D.;Lee, C.Y.;Lee, S.Y.;Lee, T.W.;Kim, J.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

Effect of Sintering Temperature on Dielectric Properties of 72 wt%(Al2O3):28 wt%(SiO2) Ceramics

  • Sahu, Manisha;Panigrahi, Basanta Kumar;Kim, Hoe Joon;Deepti, PL;Hajra, Sugato;Mohanta, Kalyani
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.495-501
    • /
    • 2020
  • The various sintered samples comprising of 72 wt% (Al2O3) : 28 wt% (SiO2) based ceramics were fabricated using a colloidal processing route. The phase analysis of the ceramics was performed using an X-ray diffractometer (XRD) at room temperature confirming the presence of Al2O5Si and Al5.33Si0.67O9.33. The surface morphology of the fracture surface of the different sintered samples having different sizes of grain distribution. The resistive and capacitive properties of the three different sintered samples at frequency sweep (1 kHz to 1 MHz). The contribution of grain and the non-Debye relaxation process is seen for various sintered samples in the Nyquist plot. The ferroelectric loop of the various sintered sample shows a slim shape giving rise to low remnant polarization. The excitation performance of the sample at a constant electric signal has been examined utilizing a designed electrical circuit. The above result suggests that the prepared lead-free ceramic can act as a base for designing of dielectric capacitors or resonators.

A Study on the Effect of Water Freezing on the Characteristics of Polymer Electrolyte Membrane Fuel Cells (물의 결빙이 고분자전해질 연료전지 성능에 미치는 영향 및 그 원인에 관한 연구)

  • Ko, Jae-Joon;Cho, Eun-Ae;Ha, Heung-Yong;Hong, Seong-Ahn;Lee, Kwan-Young;Lim, Tae-Won;Oh, In-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • Freezing of water in a polymer electrolyte membrane fuel cell (PEMFC) may cause severe problems in driving a fuel cell vehicle during the winter time. Characteristics of PEMFC which suffered low temperatures below zero degree was examined with the thermal cycles from 80 to $-10^{\circ}C$. With the thermal cycles, the cell performance was degraded due to the phase transformation and volume changes of water. Effects of freezing of water in PEMFC on the electrode structure and polarization resistance were examined by BET analysis, cyclic voltammetry, and AC impedance spectroscopy.

A Study on comnon-mode-driven shield for capacitive coupling active electrode (용량성 결합 능동 전극의 공통 모드 구동 차폐)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.201-206
    • /
    • 2012
  • The indirect-contact ECG measurement is a newly developed method for unconstrained and nonconscious measurement in daily life. This study introduced a new method of electrode circuit design developed for reducing the 60Hz power line noise observed at the indirect-contact ECG measurement. By the introduced common-mode-driven shielding, the voltage of the electrical shield surrounding the capacitive coupling electrode is maintained at the same as the common mode voltage. Though the method cannot reduce the level of common mode voltage itself, that reduces effectively the differential mode noise converted from the common mode voltage by the difference of cloth impedance between the two capacitive coupling electrode. The experiment results using the actual indirect-contact ECG showed that the 60Hz power line noise was reduced remarkably though the reduction ratio was smaller than the expected by the theory. Especially, the reduction ratio became large for the large difference of cloth. It is expected that the introduced method is useful for reducing the power line noise under condition of poor electrical grounding.

A Study on the Radiation Characteristics of Microstrip Array Antennas on the Nonplanar Surface (곡면에서의 마이크로스트립 어레이 안테나의 복사 특성에 관한 연구)

  • 구연건;이정수;고광태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.2
    • /
    • pp.121-136
    • /
    • 1989
  • In this paper, an attempt has been made to analyze the theoretically and verify experimentally the effect of curvature on the radiation characteristics of microstrip array antennas mounted conformally on the concave surface and the convex surface of the cylindrical body. The analysis of single element microstrip antenna is made by using the analysis method of Transmission Line Model. The theory of array antennas is established by application of the method of transformed coordinates, in which the translation and the ratation about each single element arrayed two-demensionally on the nonplanar surface are under consideration, and it is investigated by computation of the synthetic electric field strength in the far zone. In addition, various radiation characteristics, such as return loss, resonant frequency, radiation pattern, half-power, beamwidth, gain, are measrued and compared with the theroetical values according to the variation of curvature, by designing and building 4-element array microstrip antenna operating at 10 GHz, and microstrip feed lines. As predicted in theroy, it is verified that radiation pattern of antennas mounted on the concave and the convex surfaces alike broadens as the radius of curvature decreases. And for the curved surfaces, aggrement between computed values of the total synthetic radiation power pattern by the method of transformed coordinates and measured valuse is good. Besides, it is found that resonant frequency, input impedance and gain are hardly affected by the radius of curvature.

  • PDF