• Title/Summary/Keyword: electric impedance

Search Result 586, Processing Time 0.03 seconds

Injury and inflammation detection by the application of microcurrent through the skin

  • Hui, Timothy;Petrofsky, Jerrold
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Objective: To determine the efficacy and reliability of measuring direct current microcurrent applied through the skin to determine injury in the underlying tissues. Design: Case control study. Methods: First, microcurrent was measured as decreased blood flow induced hypoxia in healthy subjects. Next, reliability was assessed by measuring over ten days with set variations in pressure and distance between the electrodes. Finally, measurements over sprained ankle were compared to measurements over comparable uninjured areas on the same injured subject. Results: For the blood flow test phase, microcurrent significantly decreased an average of 17% after 5 minutes (p<0.05), remained decreased for 30 seconds, and returned to non-occlusive levels after 2 minutes of normal circulation. The results indicate that the microcurrent decrease was not due to blood flow, and most likely from hypoxic cellular damage. For the reliability phase, the coefficients of variation averaged 10.3% for the shoulder, 14.8% for the low back, and 29.1% for the knee. Changing distance 2.5 cm between the electrodes resulted in insignificant changes. Changes in pressure had some significant effect after an increase in force of 2.6 N, affirming the need for consistent pressure for measurement. For the injury test phase, a significant 69% decrease occurred comparing injured areas to the same area on the uninjured side, and a significant 74% occurred comparing injured and non-injured areas on the same limb. Conclusions: Microcurrent through the skin shows promise as an objective method of assessing a soft tissue injury by detecting damage likely due to hypoxia.

  • PDF

Effective Harmonic Diagnose Tool for Power Quality Problems (전기품질개선을 위한 효율적인 고조파 진단 툴 개발)

  • 설용태;이의용
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • In this paper harmonic diagnose tool is described for electric evaluate the power quality at industrial power systems is described both simulation and experimental testing during various operation conditions. PTW (Power Tools for Windows) and harmonic measuring instrument are organized around personal computer and/or instrumentation study environments interconnected via RS-232. Unknown zero sequence impedance data of cable is calculated by the modified T&D and BICC method. IEEE standard is also used to estimate the transformer input data. the proposed system provides a flexible and effective environment to diagnose the power quality at industrial distribution systems by utilizing simulations and actual field data.

  • PDF

The Impeditive Properties and Charge/Discharge of Positive Active Material $LiMnO_2$ (정극 활물질 LiMnO2 충.방전과 임피던스 특성)

  • Wi, Seong-Dong;Kim, Jong-Ok;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.299-305
    • /
    • 2003
  • The battery industries have been developed to the implementation of lithium ion secondary cell from the cell of Ni/Cd and Ni/MH in the past to be asked of an age of high technology from low technology. Also in resent the polymeric cell to get a good high function with an age of new advanced information system is changed from the 21 century to the secondary batteries society. The properties of lithium secondary batteries have the high energy density, the long cycle time, the low self discharge area and the high active voltage. The wanted properties of secondary batteries for the motion of an apparatuses of industries of an high skill age have a small type trend of the energy density and it is become with a strong asking of the industrial society market about the storable medium of the convenience and new power energy. The electrochemical properties is researched for the cell to be synthesised and crystallized the positive active material LiMnO2 of the secondary cell at 9250C to get a new improved data of the electric discharge for that the capacitance of the LiMnO2 thin film that is improving and researching with the properties and a merit and demerit in the this kind of asking.

  • PDF

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Characteristics of Radiated Electromagnetic Waves in Model GIS with Electrical Trouble and Design of Insulted Diagnosis UHF Sensor (모의 GIS의 전기적 이상에 따른 방사전자파의 특성과 절연진단용 UHF 센서 설계)

  • Park, Kwang-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.47-52
    • /
    • 2008
  • In this paper partial discharge were simulated by conducted particle, a fine protrusion, surface discharge, which could be easy accumulated charge and concentrated electric field in the model GIS. In this times this paper measured and analyzed the radiated electromagnetic waves by using spectrum analyzer and antenna ($30{\sim}2,000[MHz]$ for measurement of EMI EMC in accordance with occurrence and propagation of partial discharge. In the basis of this results, a novel UHF(Ultra High Frequency) spherical sensor is presented. The measured impedance bandwidth of the proposed antenna is from 0.3[GHz] to 1.7[GHz]. Form results of this study, this antenna will be playing an important role for the sensor for insulation diagnosis system by UHF method of real site GIS and power equipment using $SF_6$ gas.

A Study for Absolutely Distance Measurement System of Wavelength Variable Type by Using Pinciple of the Michelson Interometer (마이켈슨 간섭계의 원리를 이용한 파장변화형 절대 거리측정기의 기초 연구)

  • 김철한;신영록;양윤석;김한근;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.651-653
    • /
    • 2000
  • In this study, a distance-measurement system was proposed by using principle of the Michelson Interferometer and a fundamental research was carried out. In case of the rnichelson interferometer, relativity distance was measured by relativity-difference of two course of light. But wavelength of light source were changed in this system in order to use interference phenomenon of michelson interferometer in measuring absolutely distance. Wavelength of input signal were changed periodically and were interfered electrically. So absolute distance can be calculated by using $\Delta\lambda$ and measuring $\eta\Delta$ in electric interference. Nose by a external factor was small in this system because a absolutely distance was measured by phase difference. And a dispersion of noise was small in pulse-echo response because a error was occurred in range of phase difference of signal. Also very wide range can be measured by only single system because informations of distance were acquisited in wavelength level.

  • PDF

Neural PID Based MPPT Algorithm for Photovoltaic Generator System (태양광 발전시스템을 위한 신경회로망 PID 기반 MPPT 알고리즘)

  • Park, Ji-Ho;Cho, Hyun-Cheol;Kim, Dong-Wan
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.14-22
    • /
    • 2012
  • Performance of photovoltaic (PV) generator systems relies on its operating conditions. Maximum power extracted from PV generators depends strongly on solar irradiation, load impedance, and ambient temperature. A most maximum power point tracking (MPPT) algorithm is based on a perturb and observe method and an incremental conductance method. It is well known the latter is better in terms of dynamics and tracking characteristics under condition of rapidly changing solar irradiation. However, in case of digital implementation, the latter has some error for determining a maximum power point. This paper presents a PID based MPPT algorithm for such PV systems. We use neural network technique for determining PID parameters by online learning approach. And we construct a boost converter to regulate the output voltage from PV generator system. Computer simulation is carried out to evaluate the proposed MPPT method and we accomplish comparative study with a perturb and observe based MPPT method to prove its superiority.

Preparation of Pseudotetragonal $ZrO_{0.75}S$ and Its Electric Responses on Temperature and Frequency Related to Microstructural Relaxation

  • Ro, Yeong A;Kim, Seong Jin;Lee, Yu Gyeong;Kim, Ja Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1231-1235
    • /
    • 2001
  • Pseudotetragonal ZrO0.75S whose space group is P212121 was synthesized and the cell dimensions were a=5.110(2) $\AA$, b=5.110(7) $\AA$, and c=5.198(8) $\AA.$ The space group P212121 seems to be resulted from lowering the symmetry of cubic ZrOS structure with P213 space group by lattice distortion due to the oxygen defects. In the distorted structure, bond shortening between metal-nonmetal by reduction of cell volume and alternation of Zr-Zr distance were observed. Dielectric constant and loss data of the bulk material in temperature range -170 to 20 $^{\circ}C$ and frequency range 50 Hz to 1 MHz showed that there was dielectric transition at around -70 $^{\circ}C$ originated from the relaxation of Zr-S segment. Comparing with ZrO2 exhibited the dielectirc constants, 9.0 at room temperature, ZrO0.75S showed high dielectric constant, k = 200.2 at 100 kHz. The activation energy of relaxation time due to dielectric relaxation of Zr-S was 0.47 eV (11.3 kcal/mole). According to the impedance spectra, ZrO0.75S showed more parallel circuit character between the resistance and capacitance components at the temperature (-70 $^{\circ}C)$ that the Zr-S dielectric relaxation was observed.

Effect of Thermal Treatment Temperature on Electrochemical Behaviors of Ni/trimesic Acid-based Metal Organic Frameworks Electrodes for Supercapacitors (수퍼커패시터용 니켈/트리메식 산 기반 금속-유기구조체 전극의 전기화학적 거동에 열처리 온도가 미치는 효과)

  • Kim, Jeonghyun;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • Ni-benzene-1,3,5-tricarboxylic acid based metal organic frameworks were successfully synthesized by hydrothermal method and thermally treated at various temperature. The electrochemical performance of composites was investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. Among all prepared composites, the samples annealed at $250^{\circ}C$ showed the highest capacitance with a low resistance, and high cycle stability. It was possible to obtain the low electrical resistance and high electric conductivity of the electrode by improved microstructure and morphology after the thermal annealing at $250^{\circ}C$. The samples annealed at $250^{\circ}C$ also displayed the maximum specific capacitance with a value of $953Fg^{-1}$ at a current density of $0.66A/g^{-1}$ in 6 M KOH electrolyte. Moreover, a 86.4% of the initial specific capacitance of the composite was maintained after 3,000 times charge-discharge cycle tests. Based on these properties, it can be concluded that the composite could be applied as potential supercapacitor electrode materials.

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.