• Title/Summary/Keyword: electric impedance

Search Result 586, Processing Time 0.031 seconds

Acoustic resonance and refrigerating capability of a Hofler type thermoacoustic refrigerating system (Hofler 타입 열음향 냉장시스템의 공진특성과 냉장성능)

  • Hah, Zae-Gyoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.76-80
    • /
    • 1997
  • Acoustic resonance characteristics were analyzed and their effect on the refrigerating capability were experimentally verified on a fabricated Hofler-type thermoacoustic refrigerating system. Factors governing the overall resonance are the resonator composed of a cavity and two pipes, the loudspeaker driving the resonator, and rear side impedance characteristics of speaker housing. All these are coupled with electric constants of the speaker to exhibit electric resonance. Also the 'wall-effect' within the resonator causes attenuation to reduce the sharpness of the resonance. Analysis and experiments showed housing and the wall-effect of the resonator reduce the sharpness of resonance. Maintaining the accuracy of the resonance is, therefore, very important for efficient refrigeration.

  • PDF

Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arrestors (배전피뢰기용 접지도선의 효과적인 설치기법)

  • Lee, Bok-Hui;Gang, Seong-Man;Yu, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.253-259
    • /
    • 2002
  • This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [㎸] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages.

A Study on the Protection Wire Type Decision of Catenary System in the 350km/h High Speed Line (350km/h급 고속전차선로 보호선의 선종결정 기법에 관한 연구)

  • Lee, Hack-Pyo;Seo, Ki-Bum;Park, Jae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1818-1823
    • /
    • 2015
  • In this paper, we analyzed the optimal configuration of protection wire that have been installed in the electric railway power supply system. Protection wires are to suppress the ground potential rise when the short circuit fault between contact wire-rail(C-F), and protect the electronics equipments(signalling and communication) that are facility the wayside. The role of protection wires must be feed back quickly the fault current to the substation when a short circuit fault occurs. In this paper, we proposed that only one line to install the protection wire. Comparing how to newly proposed and existing system, most of the performance is similar. The reason is that most of the current flowing in the protection wire near the location where the fault occurred. There is no problem even if in one line for human safe and the low impedance of the return circuit in dimension to ensure the safety of the facility during the fault. To ensure safety during an fault occurs, it is sufficient even by one line. But, In the protection wire of facilities planning it is necessary to design taking into account the potential utility.

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.

The Effective Capacitance of a Constant Phase Element with Resistors in Series

  • Byoung-Yong, Chang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.479-485
    • /
    • 2022
  • The power of energy storage devices is characterized by capacitance and the internal resistance. The capacitance is measured on an assumption that the charges are stored at the electrode interface and the electric double layer behaves like an ideal capacitor. However, in most cases, the electric double layer is not ideal so a constant phase element (CPE) is used instead of a capacitor to describe the practical observations. Nevertheless, another problem with the use of the CPE is that CPE does not give capacitance directly. Fortunately, a few methods were suggested to evaluate the effective capacitance in the literature. However, those methods may not be suitable for supercapacitors which are modeled as an equivalent circuit of a CPE and resistor connected in series because the time constant of the equivalent circuit is not clearly studied. In this report, in order to study the time constant of the CPE and find its equivalent capacitor, AC and DC methods are utilized in a complementary manner. As a result, the time constants in the AC and DC domains are compared with digital simulation and a proper equation is presented to calculate the effective capacitance of a supercapacitor, which is extended to an electrochemical system where faradaic and ohmic processes are accompanied by imperfect charge accumulation process.

Three-Dimensional Magnetotelluric Modeling Using Integral Equations (적분방정식을 이용한 3차원 지자기 지전류 모델링)

  • Kim, Hee Joon;Lee, Dong Sung
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.191-199
    • /
    • 1994
  • We have developed an algorithm based on the method of integral equations to simulate the magnetotelluric (MT) responses of three-dimensional (3-D) bodies in a layered half-space. The inhomogeneities are divided into a number of cells and are replaced by an equivalent current distribution which is approximated by pulse basis functions. A matrix equation is constructed using the electric Green's tensor function appropriate to a layered earth, and is solved for the vector current in each cell. Subsequently, scattered fields are found by integrating electric and magnetic Green's tensor functions over the scattering current About a 3-D conductive body near the earth's surface, interpretation using 2-D transverse electric modeling schemes can imply highly erratic low resistivities at depth. This is why these routines do not account for the effect of boundary charges. However, centrally located profiles across elongate 3-D prisms may be modeled accurately with a 2-D transverse magnetic algorithm, which implicitly includes boundary charges in its formulation. Multifrequency calculations show that apparent resistivity and impedance phase are really two complementary parameters. Hence, they should be treated simultaneously in broadband MT interpretation.

  • PDF

A Synthesized Isotropic Pattern Antenna for Electromgnetic Environment Measurements (전자파환경 측정을 위한 합성 등방성 패턴 안테나)

  • 윤현보;최익권;임계재;백낙준;유희준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.1
    • /
    • pp.20-27
    • /
    • 1992
  • A synthesized isotropic pattern antenna can be realized by arrangeing $\lambda$/ 2 dipole along each x, y, z axis. The sleeve type $\lambda$/ 2 dipole antenna is used as a basic element for a proper impedance matching at feeding point and minimum mutual coupling effect between each element at 820 MHz - 895 MHz band. The total electric field intensity radiated from the designed isotropic pattern antenna is drived from the magnetic vector potential which is produced by each sleeve $\lambda$/ 2 dipole in the far field. This total electric field intensity is inversely proportional only to distance $\gamma$from the origin of coordinates, and pattern factor variation is less than 2.1dB. The measured value of total electric field variation depending on pattern factor is less then 2.8dB, and the difference between the calculated and measured value is 0.7dB.

  • PDF

Characteristics of Neutral Point Loci on Line Voltages to Hull When Insulation Resistance Collapses by Earthing Faults at 3 Phase Power Distribution Systems Onboard Vessels (선박 3상배전선로의 지락고장에 따른 대지전압 중성점의 이동경로 특성)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1117-1123
    • /
    • 2011
  • Ungrounded power systems are adopted onboard vessels which enable more stabilized power supply even in case of electric leakage to hull. If earthing faults happen at these systems, they make grounding impedances of power lines unbalanced each other on the three phases, resulting in high voltages to hull which can bring more possibilities of electric shocks and electric fires. This study focuses on how to configure a calculation module for transferring a grounded condition by lowered insulation resistance into a vector diagram of the voltages to hull. By using the module, the loci of neutral points were acquired to analyze how voltages to hull are affected by earthing faults and the distributed capacitances between power lines and hull. The suggested module was simulated and compared to the measured values from a test power system in good results.

A Study on a Prototype of ECG-Sensing ClothingBased on Textile Electrode for Lifestyle Monitoring (섬유전극을 기반으로 한 라이프스타일 모니터링용 ECG-센싱의류의 프로토타입 연구)

  • Kang, Da-Hye;Cho, Ha-Kyung;Song, Ha-Young;Cho, Hyun-Seung;Lee, Joo-Hyeon;Lee, Kang-Hwi;Koo, Su-Min;Lee, Young-Jae;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.11 no.3
    • /
    • pp.419-426
    • /
    • 2008
  • In order to develop "textile electrode - sensing clothing" which is a sort of smart clothing to measure electric activities of heart, we propose possible ways to develop textile electrode and design of sensing clothing, ultimately aiming to develop "ECG sensing clothing for lifestyle monitoring". Conventional sensors for measuring typical electric activities of heart keep certain distance between measuring electrodes to measure signals for electric activities of heart, but these sensors often cause inappropriate factors (e.g. motional artifacts, inconvenience of use, etc) for monitoring natural cardiac activities in our daily life. In addition, most of textile electrodes have made it difficult to collect data due to high impedance and unstable contact between skin and electrodes. To overcome these questions, we minimized distance between electrodes and skin to maximize convenience of use. And in order to complement contact between skin electrodes, we modified textile electrode's form and developed ways to design clothing. As a result, we could find out clinical significance by investigating possible associations of clinical electrocardiogram (ECG) with variation of distance between electrodes, and could also demonstrate clinically significant associations between textile electrode developed herein and clothing.

  • PDF

Development of Power Supply for Voltage-Adaptable Converter to Drive Linear Amplifiers with Variable Loads (가변부하를 갖는 선형 증폭기를 구동하기 위한 전압적응 변환기용 전력공급기 개발)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.251-257
    • /
    • 2014
  • An actuator system is a type of motor designed to control a mechanism operated by a source of energy, in the form of an electric current by converting energy into some kind of motion. As audio actuators, transforming electric voltage signal into audio signal, speakers and amplifiers are commonly used. In applications of industry, high output power systems are required. For these systems to generate high-quality output, it is essential to control output impedance of audio systems. We have developed an adaptable power supply for driving active amplifier systems with variable loads. Depending on the changing values of resistance of the speaker which produces audible sound by transforming electric voltage signal, the power supply source of the active amplifier can generate the maximum power delivered to the speaker by an adaptable change of loads. The amplifier is well protected from the abrupt increment of peak current and an excess of current flow.