• Title/Summary/Keyword: electric excitation

Search Result 218, Processing Time 0.025 seconds

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.223-246
    • /
    • 2015
  • Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.

Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation (이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정)

  • Hwan, Eum-Young;Kim, Hong-Jung;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

Dynamic design of piezoelectric structures for an efficient tactile feedback of index finger on touch screen (검지의 효율적 화면접촉감응을 위한 압전-구조물계의 동적설계)

  • Park, Young-Min;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.280-281
    • /
    • 2009
  • Piezoelectric vibrators can be good replacements of electric motors to excite touch screen of a mobile device owing to small volume and low power consumption. One problem to be solved yet for real application is larger excitation force or moment than available currently. More efficient excitation by a piezoelectric vibrator could be achieved by operating at one of resonance frequencies of the system, which must also be as close as possible to frequency range where index finger is most sensitive and increasing transmission force or moment at that frequency. In this study, dynamic models are derived for the piezoelectric exciter and an adhesive viscoelastic layer, which connect the exciter to the screen. The adhesive layer is modeled as distributed stiffness by considering its geometric shape to relative to the piezoelectric exciter. Then, equations of motion for the piezoelectric exciter and the adhesive layer are derived using Hamilton's principle. Based on this model, dynamic characteristics of the exciter will be designed to maximize the force or moment transmitted onto the screen structure.

  • PDF

Rigorous Design of a Switched Reluctance Motor Using a Hybrid Design Model

  • Gaing, Zwe-Lee;Hsiah, Yao-Yang;Tsai, Mi-Ching;Hsieh, Min-Fu;Tsai, Ming-Hsiao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.256-263
    • /
    • 2014
  • Torque ripple is a very essential index for evaluating the effectiveness of a switched reluctance motor (SRM). Many common design strategies for reducing torque ripples of a SRM are changing the excitation trigger angle of stator windings, delaying the cut-off time of winding excitation, adjusting the ratio of arc angle between stator and rotor, and changing the geometric shape of rotor. However, the output torque or the efficiency of the SRM may drop as the above design strategies are solely adopted. In this paper, a hybrid design model which is obtained by the Taguchi Method for optimally designing a SRM with lower torque ripple and higher efficiency is presented. A 12S/8P motor is taken as a study case, and the 3D finite element method (FEM) is applied to analyze the characteristics of the motor and optimize the design process. The results have shown that the proposed method can achieve the design goal of obtaining a high-performance SRM for light electric vehicle applications.

A study on equivalent control device model for power system reduction (전력 계통 축약을 위한 등가 제어기 모델에 관한 연구)

  • Lee, H.M.;Rho, K.M.;Jang, B.H.;Kwon, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.273-275
    • /
    • 1999
  • This paper presents a dynamic equivalencing method in large electric power system for stability analysis. This method of modeling simplified equivalents for parts of the network outside the study area is to evaluate the stability of a study area modeled in detail. Generators are closely coupled in an electrical sense tend to swing together in groups during disturbances, and this behavior can be exploited to reduce the size of the power system model. The characteristics of generators swing together are referred to as coherency Coherency groups whose generators state trajectory are similar to the other generators state trajectory in the same coherency group by a certain disturbance. In this paper, procedures for forming dynamic equivalents of control devices of coherency-based generating units are proposed and the aggregation of the control devices such as excitation system and governor-turbine system is accomplished by this method. This method can deal with the aggregation of the same type of control devices and combination of hydro and steam unit or the many types of excitation systems. etc. This method is shown to be efficient in reducing the number of control device of generating units with small error in the study group by result of case study presented latter part of this paper.

  • PDF

Photoluminescence Characteristic of Gallate-Based Red Emitting Phosphors with High Color Purity (색순도가 우수한 갈륨 산화물계 적색 형광체의 광발광 특성)

  • Kim, Kyoung-Un;Choi, Sung-Ho;Jung, Ha-Kyun;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.159-162
    • /
    • 2008
  • $Eu^{3+}$-activated $R_3GaO_6$ (R = Y, Gd) phosphors were prepared in a conventional solid-state reaction and their optical properties were investigated. These compounds exhibit strong red emission under light excitation at 254 nm. The emission spectra are dominated by peaks appearing around 610-630 nm that are induced by the electric dipole transition of $^5D_0\;{\rightarrow}\;^7F_2$ of $Eu^{3+}$. In addition, the appropriate CIE (Commission Internationale de l'clairage) chromaticity coordinates, (x = 0.656, y = 0.336) for $Y_3GaO_6$ and (x = 0.655, y = 0.334) for $Gd_3GaO_6$, become closer to the NTSC (National Television System Committee) standard values. With the optimized activator concentrations, the maximum emission brightness is approximately 80% of $Y_2O_3$:$Eu^{3+}$ typical red-emitting phosphor with improved color purity under an excitation condition of 254 nm.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Proton Acceleration in Weak Quasi-parallel Intracluster Shocks: Injection and Early Acceleration

  • Kang, Hyesung;Ryu, Dongsu;Ha, Ji-Hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2018
  • Collisionless shocks with low sonic Mach numbers, M<4, are expected to accelerate cosmic ray (CR) protons via diffusive shock acceleration (DSA) in the intracluster medium (ICM). However, observational evidence for CR protons in the ICM has yet to be established. Performing particle-in-cell simulations, we study the injection of protons into DSA and the early development of a nonthermal particle population in weak shocks in high ${\beta}$ plasmas. Reflection of incident protons, self-excitation of plasma waves via CR-driven instabilities, and multiple cycles of shock drift acceleration are essential to the early acceleration of CR protons in supercritical quasi-parallel shocks. We find that only in ICM shocks with $M{\geq}2.3$, a sufficient fraction of incoming protons are reflected by the overshoot in the shock electric potential and magnetic mirror at locally perpendicular magnetic fields, leading to efficient excitation of magnetic waves via CR streaming instabilities and the injection into the DSA process. Since a significant fraction of ICM shocks have M < 2.3 CR proton acceleration in the ICM might be less efficient than previously expected. This may explain why the diffuse gamma-ray emission from galaxy clusters due to proton-proton collisions has not been detected so far.

  • PDF

A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods (랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구)

  • Jangseob, Choi;Dongho, Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

Characteristics Test and Model Parameter Determination of Generator/Excitation System of Yeongdong Unit 1 due to Conversion of Renewable Generation Fuel (신재생 발전 연료전환에 따른 영동1호기 발전기/제어계 특성시험 및 모델정수 도출)

  • Mun, Jeong-Min;Lee, Tae-kyu;Shin, Woo-Ju;Kim, Jeong-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.586-593
    • /
    • 2019
  • In this paper, we introduce the wood pellet electric power generation system, which is an eco - friendly solid fuel processed pure wood, which is one of the largest capacity renewable power fuels in Korea, The Ministry of Commerce, Industry and Energy notified the Ministry of Land, Infrastructure, Transport and Tourism of the Ministry of Land, Transport and Maritime Affairs of the Ministry of Land, Transport and Maritime Affairs. Derived and validated. It is confirmed that the performance of the generator and the voltage control characteristics of excitation system are good even for the change of generator fuel. It can contribute to future reference at the plant that wants to replace fossil fuels with renewable fuels.