• Title/Summary/Keyword: elastoplastic behavior

Search Result 91, Processing Time 0.024 seconds

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.

Effect of friction between metal powder and a mandrel on densification during cold isostatic pressing (냉간 정수압 성형시 금속분말과 맨드렐 사이의 마찰이 분말의 치밀화에 미치는 영향)

  • Lee, Hui-Tae;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1116-1126
    • /
    • 1997
  • The effects of friction between powder and a mandrel on densification behavior of metal powder were investigated under cold isostatic pressing. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into finite element program (ABAQUS) to simulate compaction responses of metal powders during cold isostatic pressing. The friction coefficients between powder and mandrels with different roughness were determined by comparing experimental data and finite element results. Density distributions in the powder compacts were also studied for different friction coefficients. Finite element results were compared with experimental data for pure iron powder under cold isostatic pressing.

Rubber Isostatic Pressing and Cold Isostatic Pressing of Metal Powder (금속 분말의 고무 등가압 성형과 냉간 정수압 성형)

  • Kim, Jong-Kwang;Yang, Hoon-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1076-1086
    • /
    • 2003
  • The effect of a rubber mould on densification behavior of aluminum alloy powder was investigated under cold isostatic compaction. A thickness of rubber mould and friction effect between die wall and rubber mould were also studied. The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze deformation of rubber. The elastoplastic constitutive equation of Shima and Oyane and that of Lee on densification were implemented into a finite element program (ABAQUS) to simulate densification of metal powder for cold isostatic pressing and rubber isostatic pressing. Finite element results were compared with experimental data for densification and deformation of aluminum alloy powder under isostatic compaction.

Analysis for Cold Die Compaction of Meteal Powder (금속분말의 냉간금형 압축 해석)

  • Gwon, Yeong-Sam;Lee, Hui-Tae;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1893-1902
    • /
    • 1996
  • Densification behavior of 316L stainless steel power under die pressing was studied. The efects of friction between the powder and die wall under different die pressing modes were also investigated. The elastoplastic constitutive equations based on the yield functions of Fleck-Gurson and of Shima and Oyane were implemented into finite element program(ABAQUS) to simulate die compaction processes. The finite element results were compared with experimental data for 316L stainless steel powder under die pressing.

Design Optimization of Safety Barrier Consisting of Steel Rail and CFRP Post (강재 레일과 CFRP 기둥으로 이루어진 방호울타리의 최적화 설계)

  • Kim, Jung Joong;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • In this study a hybrid safety barrier system consisting of steel rail and carbon fiber reinforced polymer (CFRP) post is considered. W hile CFRP post is selected for impact energy reflection due to its high strength, steel rail is selected for impact energy absorption due to its high ductility. A numerical model considering the elastoplastic behavior of steel is formulated to simulate the dynamic responses of the hybrid system subject to an impact load. A hybrid roadside guard rail system of steel rail and CFRP post is proposed and analyzed with a case study. The numerical model for the hybrid roadside guard rail system is used to find optimized design of the proposed hybrid system.

Finite Element Analysis Piezocone Test I (피에조콘 시험의 유한요소 해석 I)

  • 김대규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.183-190
    • /
    • 2000
  • In this research, the finite element analysis of piezocone penetration and dissipation tests have been conducted using the anisotropic elastoplastic-viscoplastic bounding surface model in the Updated Lagrangian reference frame for the large deformation and finite strain nu\ature of piezocone penetration. Accordingly, virtual work equation and corresponding finite element equations have been reformulated. Theory of mixtures has been incorporated to explain the behavior of the sol. It has been observed that the viscoplastic part of the soil model affected the whole formulation. The results of the finite element analysis have been compared and investigated with the experimental results. The formulations and the results are described in part 'I' and part 'II', respectively.

  • PDF

Dynamic Analysis of 3 Point Bend Specimens under High Loading Rates

  • Han, Moon-Sik;Cho, Jae-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.84-93
    • /
    • 2000
  • Computer simulations of the mechanical behavior of 3 point bend specimens with a quarter notch under impact load are performed. This validity is found to be identified by the experimental proof. The cases with various loading rates applied at the side of the specimen are considered. An elastoplastic von Mises material model is chosen. Gap opening displacement, reaction force, crack tip opening displacement and strain rate are also compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study. These differences of the cases with various loading rates are also investigated.

  • PDF

Design Optimization of Blast Resistant CFRP-steel Composite Structure Based on Reliability Analysis (신뢰성 해석에 의한 내폭 CFRP-steel 복합구조의 최적화 설계)

  • Kim, Jung Joong;Noh, Hyuk-Chun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.10-16
    • /
    • 2012
  • This study presents the effectiveness of a composite structure at improving blast resistance. The proposed composite structure consists of carbon fiber reinforced polymer (CFRP) and steel layers. While CFRP layer is used for blast energy reflection due to its high strength, steel layer is used for blast energy absorption due to its high ductility. A dynamic model is used to simulate the elastoplastic behavior of the proposed composite structure subject to blast load. Considering the magnitude variations of a blast event, the probability of failure of each layer is evaluated using reliability analysis. By assigning design probability of failure of each layer in the composite structure, the thickness of layers is optimized. A case study for the design of CFRP-steel composite structure subjected to an uncertain blast event is also presented.

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.