• Title/Summary/Keyword: elasto-plastic seismic response

Search Result 22, Processing Time 0.017 seconds

Seismic performance evaluation of Pier-Shafts system with multi-layered soil (다양한 지반층을 갖는 Pier-Shafts 시스템의 내진성능평가)

  • Jang, Sung-Hwan;Nam, Sang-Hyeok;Song, Ha-Won;Kim, Byung-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.69-72
    • /
    • 2008
  • The so-called Pier-Shafts system which consists of the continuous column and shaft is often used to support the highway bridge structure because of advantages in easy construction and low cost. In the earthquake region, the Pier-Shafts system undergoes large displacements and represents a nonlinear behavior under the lateral seismic loading. The soil-pile interaction should be considered for more accurate analysis of the Pier-Shafts system. In this study, a transverse response of a reinforced concrete Pier-Shafts system inside multi-layered soil medium is predicted using a finite element program which adopts an elasto-plastic interface model for the interface behavior between the shaft and the soil. Then, seismic analysis is performed to evaluate the performance of Pier-Shafts system under strong ground motion and their results are verified with experimental data.

  • PDF

Modeling of Near Fault Ground Motion due to Moderate Magnitude Earthquakes in Stable Continental Regions (안정대륙권역의 중규모지진에 의한 근단층지반운동의 모델링)

  • Kim, Jung-Han;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.101-111
    • /
    • 2006
  • This paper proposes a method for modeling new fault ground motion due to moderate size earthquakes in Stable Continental Regions (SCRs) for the first time. The near fault ground motion is characterized by a single long period velocity pulse of large amplitude. In order to model the velocity pulse, its period and peak amplitude need be determined in terms of earthquake magnitude and distance from the causative fault. Because there have been observed very few new fault ground motions, it is difficult to derive the model directly from the recorded data in SCRs. Instead an indirect approach is adopted in this work. The two parameters, the period and peak amplitude of the velocity pulse, are known to be functions of the rise time and the slip velocity. For Western United States (WUS) that belongs active tectonic regions, there art empirical formulas for these functions. The relations of rise time and slip velocity on the magnitude in SCRs are derived by comparing related data between Western United States and Central-Eastern United States that belongs to SCRs. From these relations, the functions of these pulse parameters for NFGM in SCRs can be expressed in terms of earthquake magnitude and distance. A time history of near fault ground motion of moderate magnitude earthquake in stable continental regions is synthesized by superposing the velocity pulse on the for field ground motion that is generated by stochastic method. As an demonstrative application, the response of a single degree of freedom elasto-plastic system is studied.