• Title/Summary/Keyword: elasto-plastic joint element

Search Result 40, Processing Time 0.024 seconds

Strength Analysis of Cross Groove Type Constant Velocity Joint Cage for Propeller Shaft (프로펠러샤프트용 Cross Groove형 등속조인트 케이지 강도해석)

  • Oh, Byung-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.74-79
    • /
    • 2008
  • The fracture strength of cross groove type constant velocity joint is largely determined by the fracture strength of the cage having window-like pockets for retaining the torque transmitting balls. A stress distribution acting on the cage is influenced by rigidities of the rim portion and of the column members, therefore requires a calculation such as FEA. To analyze fracture strength of cage, a 3-D elasto-plastic finite element analysis and a submodeling technique are used to achieve both computational efficiency and accuracy. The results are in reasonably good agreement with experiment.

Fatigue Life Analysis of Butt-welded specimen by Local Strain Approach (국부변형률방법을 이용한 용접시험편의 피로수명 해석)

  • Lee Dong-Hyong;Seo Jung-Won;Goo Byeong-choon;Seok Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.73-78
    • /
    • 2003
  • The residual stresses and. distortions of structures by welding exert negative effect on the safety of railroad structures. This investigation performs a thermal elasto-plastic analysis using finite element techniques to evaluate residual stresses in butted-welded joint. Considering this initial residual stresses, local stress and strain at the critical location (weld toe) during the loading were analyzed by elastic plastic finite element analysis. Fatigue crack initiation life and fatigue crack propagation life of butt-welded specimen were predicted by local strain approach and Neuber's role and Paris law. It is demonstrated that fatigue life estimates by local strain approach closely approximate the experimental results.

  • PDF

The Simulation of Notch Length on the Stress Distribution in Lap Zone of Single Lap Joint with a Centered Notch

  • Yan, Zhanmou;You, Min;Yi, Xiaosu;Zheng, Xiaoling
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.18-23
    • /
    • 2006
  • The influence of the notch length on the stress distribution of mid-bondline and adherend was investigated using elasto-plastic finite element method. The results from the simulation showed that peak stress of mid-bondline decreased markedly as adherend with notch in the middle of lap zone, and the stress in the middle of joint with low stress originally increased evidently. All the peak stresses decreased firstly and increased again as the length of notch increased. The relative higher peak stress appeared at the point near the notch of adherend where might be failed previously during the loading procedure.

  • PDF

A Study on the Distribution of Residual Stress in Fillet Welds for Thick Mild Steel Plate (두꺼운 연강판(軟鋼板) 필렛 용접(熔接)이음부의 잔류응력분포(殘留應力分布)에 대한 연구(硏究))

  • Dong-Suk,Um;Sung-Won,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.17-24
    • /
    • 1983
  • In this study, it was investigated the distribution of residual stress in the direction of loading between the root and toe the load fillet welds for thick steel plate. Residual stress distributions are measured by sectioning method which is one of stress-relaxation technique in welded joint, and analyzed by two dimensional finite element method on thermo-elasto-plastic theory under plane stress condition. These are compared the results of F.E.M analysis with the experimental result by stress-relaxation techniques. As a results, the following conclusion were obtained. (1) In the no penetration fillet welded joint specimen using mild steel plate with 25mm in thickness, the residual stress of loading direction near the root was about $10kg/mm^2$ tensile. (2) The tensile residual stress has been observed in fillet region of the fillet joint by F.E.M. analysis method. (3) The range of compressive residual stress distribution from the root was largest in the case of 5mm root penetration.

  • PDF

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

A Study on Analysis Method of Asphalt Plug Joint using FEM (유한요소 해석을 통한 Asphalt Plug Joint의 분석 방법에 대한 연구)

  • Moon, Kyoung-Tae;Park, Philip;Park, Sang-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.237-245
    • /
    • 2011
  • Asphalt Plug Joint(APJ) is a new type of expansion joint that it's application are increased in USA as well as several European countries. APJ's' advantages are cheap construction and maintenance costs, and simple construction and securing of excellent flatness. However, APJ's usability is hindered because it showed a problem of premature failure. Research for solving this problem has been progressed, and FEM analysis among existing researches was peformed. However, the behavior of APJ was insufficiently analyzed and the reliability of the analysis was much low, since the material showing complicated behavior was oversimplified, Therefore, a material model was proposed and its effectiveness was confirmed by comparing it with actual behavior in order to improve the reliability of FEM analysis in this paper. ABAQUS program was used for FEM analysis, and an elasto-plastic model and a viscous-plastic model as the material model of APJ were suggested on the base of experiment results of APJ material performed by Bramel et al. The elasto-plastic model was defined by time-independent analysis since it didn't consider time and strain rate, and the viscous-plastic model was defined by time-dependent analysis since it considered. Influence of various elements affecting the behavior of APJ was investigated, and it was confirmed that the time-dependent analysis showed better result closed to actual behavior than the time-independent analysis.

A Study on the Prediction of Deformation of Welded Structures (용접구조물의 변형 예측에 관한 연구)

  • 서승일;장창두
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.64-73
    • /
    • 1997
  • Deformations of structures due to welding appear much complicated and deformated modes are also complex. As parameters governing deformations are various and effect of parameters on deformations is not well known, precise prediction of deformation due to welding has been a difficult problem. Until now, many research papers as to welding deformation have been published, but the research results can explain only one aspect of welding deformation have been published, but the research results can explain only one aspect of welding deformation and are hard to be used in reasonable prediction of welding deformations in complicated structures. In this study, based on the accumulated results concerning to welding deformations, a practical method to predict complicated welding deformations of large structure is proposed. A simplified model to estimate residual plastic strains is suggested and main parameters affecting residual plastic strains are shown to be heat input and joint restaints. Inherent strain theory and experimental data are combined with the finite element method and welding deformations of large structures are calculated by elastic analysis. Comparison of calculated results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

Analysis of Angular Deformation in Multi-pass Butt Joint Welding of Thick Plates with X-shape Grooves using the Finite Element Method (X형 개선을 가진 후판 맞대기 용접에 있어서 유한요소법을 이용한 각변형 해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • Removal of angular deformation induced during the welding of butt joints in thick steel plates needs expert skill and is costly. To reduce deformation, proper joint designs are studied with a prediction of deformation prior to welding. However, as the thickness of a plate increases, a predictive analysis of the welding process is more difficult, especially if there is an increase in the number of welding passes in the joint. In this study, a numerical model with the finite element method (FEM) was developed to analyze the angular deformation in the multi-pass welding of butt joints of plates made of AH32 steel that had a thickness of up to 100 mm. A series of numerical simulations were then performed based on the developed model to predict the deformations for thick plates. With the results obtained by the analyses, this study suggested optimal X-shape grooves for the butt joints of thick plates to minimize the angular deformation. As the thickness of the plate increased to 100 mm, the ratio of the depth of the front-side groove to that of the back-side groove should be gradually increased to nearly 1:3.

Analysis on the Fatigue Crack Propagation of Weld Toe Crack through Residual Stress Field (잔류응력장을 전파하는 용접 토우부 균열의 전파해석)

  • 김유일;전유철;강중규;한종만;한민구
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.33-40
    • /
    • 2000
  • Fatigue crack propagation life of weld toe crack through residual stress field was estimated with Elber's crack concept. Propagation of weld toe crack is heavily influenced by residual stress caused by welding process, so it is essential to take into account the effect of residual stress on the propagation life of weld toe crack. Fatigue crack at transverse and longitudinal weld toe was studied respectively, which represent typical weld joint in ship structure. Numerical and experimental studies are performed for both cases. Residual stress near weldment was estimated through nonlinear thermo-elasto-plastic finite element method, and residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated with Newman-Forman-de Koning-Henriksen equation which is based on Dugdale strip yield model in estimating crack closure level U at different stress ratio. Calculated crack propagation life coincided well with experimental results.

  • PDF

The FEM Analysis of Recessing Location on the Stress Distribution in Aluminum Double Lap Joint

  • You, Min;Yan, Zhanmou;Zheng, Xiaoling;Yu, Haizhou
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.13-17
    • /
    • 2006
  • The elasto-plastic finite element method (FEM) was used to investigate the effect of off-center recessing location (8 mm length) on the stress distribution in the lap zone of adhesively bonded aluminium double lap joint. The results from simulation showed that the effect of off-cent recessing in bondline of double lap joint in the mid-bondline is not evidently to stress distribution in mid-bondline but the peak stresses both in mid-bondline and in the interface near the adherend side of the joint may increase markedly when an 8 mm length recessing was arranged symmetrical to the point of x =18 mm. When shifting an 8 mm length recess from near left end to the right end of the lap zone, all the highest peak stresses in the mid-bondline occurred under the condition of recess arranged symmetrical to the point of x = 6 mm.

  • PDF