• Title/Summary/Keyword: elasticity theory

Search Result 567, Processing Time 0.017 seconds

Modal analysis of viscoelastic nanorods under an axially harmonic load

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2020
  • Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory

  • Pradhan, S.C.;Phadikar, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.193-213
    • /
    • 2009
  • In this paper structural analysis of nonhomogeneous nanotubes has been carried out using nonlocal elasticity theory. Governing differential equations of nonhomogeneous nanotubes are derived. Nanotubes include both single wall nanotube (SWNT) and double wall nanotube (DWNT). Nonlocal theory of elasticity has been employed to include the scale effect of the nanotubes. Nonlocal parameter, elastic modulus, density and diameter of the cross section are assumed to be functions of spatial coordinates. General Differential Quadrature (GDQ) method has been employed to solve the governing differential equations of the nanotubes. Various boundary conditions have been applied to the nanotubes. Present results considering nonlocal theory are in good agreement with the results available in the literature. Effect of variation of various geometrical and material parameters on the structural response of the nonhomogeneous nanotubes has been investigated. Present results of the nonhomogeneous nanotubes are useful in the design of the nanotubes.

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.131-157
    • /
    • 2018
  • In this study, Eringen nonlocal elasticity theory in conjunction with surface elasticity theory is employed to study nonlinear free vibration behavior of FG nano-plate lying on elastic foundation, on the base of Reddy's plate theory. The material distribution is assumed as a power-law function and effective material properties are modeled using Mori-Tanaka homogenization scheme. Hamilton's principle is implemented to derive the governing equations which solved using DQ method. Finally, the effects of different factors on natural frequencies of the nano-plate under hygrothermal situation and various boundary conditions are studied.

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.

Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation

  • Ebrahimi, Farzad;Ehyaei, Javad;Babaei, Ramin
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.245-261
    • /
    • 2016
  • Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-law form. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton principle and Eringen's nonlocal elasticity theory. Navier's method is presented to explore the influences of elastic foundation parameters, various thermal environments, small scale parameter, material composition and the plate geometrical parameters on buckling characteristics of the FG nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples show that the buckling characteristics of the FG nanoplate are related to the material composition, temperature distribution, elastic foundation parameters, nonlocality effects and the different loading conditions.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system

  • Zhou, Changlin;Zhao, Yi;Zhang, Ji;Fang, Yuan;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.295-307
    • /
    • 2020
  • The vibrational characteristics of Multi-Phase Nanocomposite (MPC) reinforced annular/circular plate under initially stresses are presented using the state-space formulation based on three-dimensional elasticity theory (3D-elasticity theory) and Differential Quadrature Method (DQM). The MPC reinforced annular/circular plate is under initial lateral stress and composed of multilayers with Carbon Nanotubes (CNTs) uniformly dispersed in each layer, but its properties change layer-by-layer along the thickness direction. The State-Space based Differential Quadrature Method (SS-DQM) is presented to examine the frequency behavior of the current structure. Halpin-Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale composite. A singular point is investigated for modeling the circular plate. The CNTs are supposed to be randomly oriented and uniformly distributed through the matrix of epoxy resin. Afterward, a parametric study is done to present the effects of various types of sandwich circular/annular plates on frequency characteristics of the MPC reinforced annular/circular plate using 3D-elasticity theory.