• Title/Summary/Keyword: elastically mounted mass

Search Result 4, Processing Time 0.018 seconds

Transverse vibrations of simply supported orthotropic rectangular plates with rectangular and circular cut-outs carrying an elastically mounted concentrated mass

  • Avalos, D.R.;Larrondo, H.A.;Laura, P.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.503-512
    • /
    • 1999
  • Practicing a hole or an orifice through a plate or a slab constitutes a very frequent engineering situation due to operational reasons imposed on the structural system. From a designer's viewpoint it is important to know the effect of this modification of the mechanical system upon its elastodynamic characteristics. The present study deals with the determination of the lower natural frequencies of the structural element described in the title of the paper using a variational approach and expressing the displacement amplitude of the plate in terms of the double Fourier series which constitutes the classical, exact solution when the structure is simply supported at its four edges.

Effects of Mount Eccentricity and External Force Eccentricity on the Vibration Characteristics of Naval Shipboard Equipments Supported by Elastic Mounts (마운트편심과 기진력편심이 함정탑재장비의 진동특성에 미치는 영향)

  • Lee, Hyun Yup;Lee, Chung Hyun;Ruy, Wonsun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • A rigid body supported by 4 linear springs has been analyzed, to investigate the effects of eccentricities on the vibration responses for naval shipboard equipments supported by elastic mounts. Considering mount eccentricity (the location of the center of spring reaction forces relative to the mass center) and excitation force eccentricity (the location of the center of the excitation force relative to the mass center), the vibration phenomena have been formulated and discussed. Also, the effects of the eccentricities have been evaluated and discussed for the elastically mounted naval shipboard equipment. Results show that the mount eccentricity has little effects on the structure-borne noise above the natural frequency of the system, however the excitation force eccentricity has significant effects all over the frequency range.

Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.659-676
    • /
    • 2008
  • The reports regarding the free vibration analysis of uniform beams carrying single or multiple spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s) considered are limited. In this paper, by taking the mass of the helical spring into consideration, the stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices, the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of springmass systems (or loaded beam) are determined using the conventional finite element method (FEM). Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same loaded beam are also determined using the presented equivalent mass method (EMM), where the cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly attached by the same number of equivalent masses. Good agreement between the numerical results of FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented approaches.

Study of Stay Vanes Vortex-Induced Vibrations with different Trailing-Edge Profiles Using CFD

  • Neto, Alexandre D'Agostini;Saltara, Fabio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.363-374
    • /
    • 2009
  • The 2D flow around 13 similar stay-vane profiles with different trailing edge geometries is investigated to determinate the main characteristics of the excitation forces for each one of them and their respective dynamic behaviors when modeled as a free-oscillating system. The main goal is avoid problems with cracks of hydraulic turbines components. A stay vane profile with a history of cracks was selected as the basis for this work. The commercial finite-volume code $FLUENT^{(R)}$ was employed in the simulations of the stationary profiles and, then, modified to take into account the transversal motion of elastically mounted profiles with equivalent structural stiffness and damping. The k-$\omega$ SST turbulence model is employed in all simulations and a deforming mesh technique used for models with profile motion. The static-model simulations were carried out for each one of the 13 geometries using a constant far field flow velocity value in order to determine the lift force oscillating frequency and amplitude as a function of the geometry. The free-oscillating stay-vane simulations were run with a low mass-damping parameter ($m^*{\xi}=0.0072$) and a single mean flow velocity value (5m/s). The structural bending stiffness of the stay-vane is defined by the Reduced Velocity parameter (Vr). The dynamic analyses were divided into two sets. The first set of simulations was carried out only for one profile with $2{\leq}Vr{\leq}12$. The second set of simulations focused on determining the behavior of each one of the 13 profiles in resonance.