• Title/Summary/Keyword: elastic-plastic fracture

Search Result 274, Processing Time 0.023 seconds

Deformation and Fracture Behavior of Structural Bulk Amorphous Metal under Quasi-Static Compressive Loading (준정적 압축하에서 구조용 벌크 아몰퍼스 금속의 변형 및 파괴거동)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1630-1635
    • /
    • 2003
  • The deformation and fracture behaviors of a bulk amorphous metal, Zr-based one (Zr$\_$41.2/Ti$\_$13.8/Cu$\_$12.5/Ni$\_$10/Be$\_$22.5/: Vitreloy), were investigated over a strain rate range (7x10$\^$-4/~4 s$\^$-1/). The uniaxial compression test and the indentation test using 3mm-diameter WC balls were carried out under quasi-static loading conditions. As a result, at the uniaxial compressive state, the fracture stress of the material was very high (~1,700MPa) and the elastic strain limit was about 2%. The fracture strength showed a strain rate independent behavior up to 4 s$\^$-1/. Using indentation tests, the plastic deformation behavior of the Zr-based BAM up to a large strain value of 15% could be achieved, even though it was the deformation under locally constrained condition. The Meyer hardness of the Zr-based BAM measured by static indentation tests was about 5 GPa and it revealed negligible strain hardening behavior. At indented sites, the plastic indentation occurred forming a crater and well-developed multiple shear bands were generated around it along the direction of 45 degree when the indentation load exceeded 7kN. With increasing indentation load, shear bands became dense. The fracture surface of the specimen after uniaxial compressive tests showed vein-like pattern, typical morphology of many BAMs.

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Plastic Limit Loads for Through-Wall Cracked Pipes Using 3-D Finite Element Limit Analyses (3차원 유한요소 한계해석을 이용한 관통균열 배관의 소성한계하중)

  • Huh Nam-Su;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.568-575
    • /
    • 2006
  • The present paper provides plastic limit load solutions of axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly-plastic behavior. As a loading condition, axial tension, global bending moment, internal pressure, combined tension and bending and combined internal pressure and bending are considered for circumferential through-wall cracked pipes, while only internal pressure is considered for axial through-wall cracked pipes. Especially, more emphasis is given for through-wall cracked pipes subject to combined loading. Comparisons with existing solutions show a large discrepancy in short through-wall crack (both axial and circumferential) for internal pressure. In the case of combined loading, the FE limit analyses results show thickness effect on limit load solutions. Furthermore, the plastic limit load solution for circumferential through-wall cracked pipes under bending is applied to derive plastic $\eta\;and\;{\gamma}$-factor of testing circumferential through-wall cracked pipes to estimate fracture toughness. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be meaningful fur structural integrity assessment of through-wall cracked pipes.

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (II) -Optimised Reference Stress Based Estimation- (실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (II) - 최적참조응력에 기초한 방법-)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2442-2449
    • /
    • 2002
  • This paper provides an reference stress based J estimation equation fur cylinders with finite internal axial surface cracks under internal pressure. In part 1, the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-0) materials is proposed. In this paper, the developed CE/EPRI -type solutions ale then re-formulated based on the reference stress concept. Such a re-formulation provides a simpler equation for J. estimation are then further extended to combined internal pressure and bending. The proposed reference stress based J estimation equation is compared with elastic-plastic 3-D FE results using actual stress-strain data for a Type 304 stainless steel. Good agreement between the FE results and the proposed reference stress based J estimations provides confidence in the use of the proposed method to elastic -plastic fracture mechanics of pressurised piping.

Evaluation of the Vacuum brazed stainless steel by Ni-based filler metals (Ni기 삽입금속에 의해 진공 브레이징된 stainless steel의 특성평가)

  • Chang, Se-Hun;Hong, Ji-Min;Jeong, Chang-Yeol;Choi, Se-Weon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.342-346
    • /
    • 2007
  • Microstructure and tensile strength of the vacuum brazed stainless steel were investigated in this study. For vacuum brazing of the stainless steel 303 and 304, the BNi-2, 3, 4 and 7 were used as filler metals. Among these filler metals, the BNi-2 showed excellent wettability at $1050^{\circ}C$. Indeed, the brazed stainless steel using the BNi-2 showed the highest tensile strength (483 MPa) among all brazed specimens. This is attributed to degree of interfacial reaction between the filler metal and stainless steel. Brazed stainless steel with BNi-2, 3 filler metals showed almost elastic deformation followed by plastic yielding and strain hardening up to a peak stress. On the other hand, it is likely that the fracture of the brazed specimens with BNi-4, 7 was occurred in elastic range without plastic yielding up to a peak stress.

Development of a Three Dimensional Elastic Plastic Analysis System for the Integrity Evaluation of Nuclear Power Plant Components (원자력발전소 주요기기의 건전성 평가를 위한 3차원 탄소성 해석 시스템의 개발)

  • Huh, Nam-Su;Im, Chang-Ju;Kim, Young-Jin;Pyo, Chang-Ryul;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2015-2021
    • /
    • 2000
  • In order to evaluate the integrity of nuclear power plant components, the analysis based on fracture mechanics is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, it is time consuming to design the finite element model of a cracked structure. Also, the J-integral should be verified by alternative methods since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS program. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI (Domain Integral) and EDI (Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently.

Effect if Grain Size on Plasticity of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 소성 변형 특성에 미치는 결정립 크기의 효과)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.807-812
    • /
    • 1998
  • Mechanical properties of two types of polycrystlline {{{{ { { Ti}_{3 }SiC }_{2 } }} with different grain size were investigated. A fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} has a higher fracture strength and hardness. Plot of strength versus Vickers indentation load indicated that {{{{ { { Ti}_{3 }SiC }_{2 } }} has a high flaw tolerance. Hertzian indentation test using a spherical indenter was used to study elastic and plastic behavior in {{{{ { { Ti}_{3 }SiC }_{2 } }}. Indentation stress-strain curves of each material are made to evaluate the plasticity of {{{{ { { Ti}_{3 }SiC }_{2 } }} Both find and coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} showed high plasticity. In-dentation stress-strain curve of coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} deviated even more from an ideal elastic limit in-dicating exceptional plasticity in this material. Deformation zones were formed below the contact as well as around the contact area in both materials but the size of deformation zone in coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} was much larger than that in fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} Intragrain slip and kink would account for high plasticity. Plastic behavior of {{{{ { { Ti}_{3 }SiC }_{2 } }} was strongly influenced by grain size.

  • PDF

Experimental Behaviors of the Constraint Effects A2 Depending on Displacement at Various Measuring Positions near Crack Front for STS 316L CT Specimen (균열선단 변위측정위치에 따른 STS 316L의 구속효과 A2 거동)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.533-538
    • /
    • 2009
  • The magnitude of constraint effect $A_2$ values on the non-linear elastic plastic fracture toughness was experimentally estimated by using displacement at various measuring positions near crack tip. Constraint effect $A_2$ value was dependent on specimen configuration and on the measured displacement near crack front. The crack tip opening displacement in the vicinity of the crack tip front should be estimated within plastic region when appropriately constraint effect was calculated. It was found that the magnitude of constrain effect |$A_2$| is below 8.0 at the crack tip. But an appropriate location to measure the effective constraint effects $A_2$ at the critical value of J that crack initiation is characterizable by is r = 2mm and ${\theta}=90^{\circ}$ away from original crack tip, and the constraint effect |$A_2$| estimated is 5.3.

Failure Analysis of Top Nozzle Holddown Spring Screw for Nuclear Fuel Assembly (핵연료상단고정체 누름스프링 체결나사의 파손해석)

  • Koh, S.K.;Ryu, C.H.;Lee, Jeong-Jun;Na, E.G.;Baek, T.H.;Jeon, K.L.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1234-1239
    • /
    • 2003
  • A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF