• 제목/요약/키워드: elastic strain energy

검색결과 284건 처리시간 0.027초

가스 하이드레이트 부존 퇴적토의 지반공학적 물성 (Geotechnical properties of gas hydrate bearing sediments)

  • 김학성;조계춘;이주용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.151-151
    • /
    • 2011
  • Large amounts of natural gas, mainly methane, in the form of hydrates are stored on continental margins. When gas hydrates are dissociated by any environmental trigger, generation of excess pore pressure due to released free gas may cause sediment deformation and weakening. Hence, damage on offshore structures or submarine landslide can occur by gas hydrate dissociation. Therefore, geotechnical stability of gas hydrate bearing sediments is in need to be securely assessed. However, geotechnical characteristics of gas hydrates bearing sediments including small-strain elastic moduli have been poorly identified. Synthesizing gas hydrate in natural seabed sediment specimen, which is mainly composed of silty-to-clayey soils, has been hardly attempted due to their low permeability. Moreover, it has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in specimen scale play a critical role in determining physical properties of hydrate bearing sediments. In the presented study, we synthesized gas hydrate containing sediments in an instrumented oedometric cell. Geotechnical and geophysical properties of gas hydrate bearing sediments including compressibility, small-strain elastic moduli, elastic wave, and electrical resistivity are determined by wave-based techniques during loading and unloading processes. Significant changes in volume change, elastic wave, and electrical resistivity have been observed during formation and dissociation of gas hydrate. Experimental results and analyses reveal that geotechnical properties of gas hydrates bearing sediments are highly governed by hydrate saturation, effective stress, void ratio, and soil types as well as morphological feature of hydrate formation in sediments.

  • PDF

탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리에 대한 해석적 연구 (Analytical Study on Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet(CFS))

  • 심종성;배인환
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.177-186
    • /
    • 1999
  • 본 연구의 목적은 탄소섬유쉬트로 보강된 시험체의 주요 파괴모드인 계면모드인 계면박리 모드에 의한 부재의 파괴를 규명하는 것이다. 탄소섬유쉬트로 보강된 손상된 보시험체의 계면박리 모드를 해석하기 위하여 선형탄성 파괴역학(LEFM)의 컴플라이언스법과 유한요소법을 사용하여 계면파괴 역학변수인 에너지해방율(strain energy release rate, G)을 고찰하였다. 손상된 단순 보시험체의 해석결과, 최대 에너지해방율($G_{max}$)은 에폭시 접착두께에 관계없이 바깥 휨균열에서 시작된 계면 전단 균열 길이가 18mm 부근에서 발생하였다. 보강보의 강도 해석결과, 극한강도 설계법에 따른 단면의 공칭 휨 강도에 대한 계면박리에 의해 부재가 파괴되는 것으로 해석되었다. 또한 적용된 접착두께 1mm~3mm는 에너지해방율에 거의 영향을 미치지 않아 계면박리의 주요 인자가 아닌 것으로 나타났다.

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.127-143
    • /
    • 2012
  • The present paper deals with the nonlinear analysis of the functionally graded piezoelectric (FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied on the plate. The geometric nonlinearity is considered in the strain-displacement equations based on Von-Karman assumption. The problem is symmetric due to symmetric loading, boundary conditions and material properties. The radial and transverse displacements are supposed as two dominant components of displacement. The constitutive equations are derived for two sections of the plate, individually. Total energy of the system is evaluated for elastic solid and piezoelectric sections in terms of two components of displacement and electric potential. The response of the system can be obtained using minimization of the energy of system with respect to amplitude of displacements and electric potential. The distribution of all material properties is considered as power function along the thickness direction. Displacement-load and electric potential-load curves verify the nonlinearity nature of the problem. The response of the linear analysis is investigated and compared with those results obtained using the nonlinear analysis. This comparison justifies the necessity of a nonlinear analysis. The distribution of the displacements and electric potential in terms of non homogenous index indicates that these curves converge for small value of piezoelectric thickness with respect to elastic solid thickness.

횡변형률 이력에 근거한 FRP-구속 콘크리트의 해석 (Analysis of FRP-Confined Concrete According to Lateral Strain History)

  • 조순호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.201-204
    • /
    • 2008
  • FRP 합성재료로 구속된 콘크리트의 응력-변형률 응답을 합리적으로 예측할 수 있는 해석모델이 제시되었다. 제안된 모델은 하중이 증가함에 따라 점진적으로 발생하는 미세균열에 의한 부피팽창이 미세재료구조의 손상을 나타내는 중요한 척도이며, 이에 손상정도에 따라 하중지지능력을 일관되게 산정할 수 있다는 기본개념에 근거한다. 이를 위하여 제안모델은 면적변형률 및 공극의 함수로 표시된 탄성계수, 팽창콘크리트와 구속매체의 상호작용을 나타내는 에너지 평형식, 변화하는 구속력 및 점증계산논리를 포함한다. 따라서 실험으로부터 유도된 팽창비 관계식으로부터 횡방향 혹은 부피팽창변형률을 산정하는 기존의 해석모델과는 달리 역학적 거동 및 에너지 평형식으로부터 연속적으로 변화하는 횡방향 변형률을 산정한다.

  • PDF

타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석 (Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness)

  • 추헌호;심재박;오민우;김동현
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

임의의 곡률과 변두께를 갖는 두꺼운 축대칭 회전 셸의 3차원적 장방정식, 운동 방정식, 에너지 범함수 (Three-Dimensional Field Equations, Equations of Motion, and Energy Functionals for Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness)

  • 강재훈;이은택;양근혁
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.156-166
    • /
    • 2001
  • This work uses tensor calculus to derive a complete set of three-dimensional field equations well-suited for determining the behavior of thick shells of revolution having arbitrary curvature and variable thickness. The material is assumed to be homogeneous, isotropic and linearly elastic. The equations are expressed in terms of coordinates tangent and normal to the shell middle surface. The relationships are combined to yield equations of motion in terms of orthogonal displacement components taken in the meridional, normal and circumferential directions. Strain energy and kinetic energy functionals are also presented. The equations of motion and energy functionals may be used to determine the static or dynamic displacements and stresses in shells of revolution, including free and forced vibration and wave propagation.

  • PDF

A practical power law creep modeling of alloy 690 SG tube materials

  • Lee, Bong-Sang;Kim, Jong-Min;Kwon, June-Yeop;Choi, Kwon-Jae;Kim, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2953-2959
    • /
    • 2021
  • A new practical modeling of the Norton's power law creep is proposed and implemented to analyze the high temperature behaviors of Alloy 690 SG tube material. In the model, both the stress exponent n and the rate constant B are simply treated as the temperature dependent parameters. Based on the two-step optimization procedure, the temperature function of the rate constant B(T) was determined for the data set of each B value after fixing the stress exponent n value by using the prior optimized function at each temperature. This procedure could significantly reduce the numerical errors when using the power law creep equations. Based on the better description of the steady-state creep rates, the experimental rupture times could also be well predicted by using the Monkman-Grant relationship. Furthermore, the difference in tensile strengths at high temperatures could be very well estimated by assuming the imaginary creep stress related to the given strain rate after correcting the temperature effects on the elastic modulus.

폴리모 모르터를 이용한 강화목재보의 개발 (Development of Reinforced Wood Beams Using Polymer Mortar)

  • 연규석
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.79-86
    • /
    • 1990
  • Based on limited number of tests on reinforced wood beams using polymer mortar in this study, following conclusions were drawn ; 1.Reinforcing compression side of wood beam using polymer mortar was effective in reducing deflection. 2.By increasing thickness of polymer mortar, effective beam stiffness was improved, but energy absorption was reduced. 3.Polymer mortar reinforcement improved compressive strength and reduced strain in compression side of the beam. Therefore, it was possible to change the failure mode from by compression in control beam to by tension in composite beams. 4.The composite beams that have more than 2cm of polymer mortar layer did not perform well because a strain redistribution and separation of meterials at interface were induced in moment span. 5.To maximize the load carrying capacity of composite beam, it is necessary to make polymer mortar and wood behave together without failing at interface. To do this, it is needed to use a polymer mortar which has high strength with such elastic modulus that is closer to elastic modulus of wood. otherwise, it is recommended to use shear connectors at interface to prevent separation of materials under ultimate load.

  • PDF

박막/쉘 혼합요소를 이용한 박판성형 해석과 박막/쉘 판별조건에 관한 연구 (A Study on the Criterion for Membrane/Shell Mixed Element and Analysis of Sheet Metal Forming Problem)

  • 정동원;양경부
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.57-64
    • /
    • 1998
  • This study is concerned with criterion for membrane to shell conversion in two-dimensional elastic-plastic finite element analysis using membrane/shell mixed element. It is well known that in the sheet metal forming some parts of the sheet deform under almost pure stretching (membrane) conditions, whereas other parts in contact with sharp tooling surfaces can develop significant bending strains. The membrane analysis has a short computational time however, in the membrane analysis the bending effects can not be condidered at all. On the other hand, the shell analysis allows the consideration of bending effects, but involves too much computational time. So Onatel),2), Yang et al3),4) developed the membrane/shell mixed element. Onate introduced the energy ratio parameter and Yang et al introduced the ratio of thickness to radius of curvature as the criterion. In the present study we propose a new criterion by using the angle between both side elements in the nodal point.

  • PDF