• Title/Summary/Keyword: elastic stiffness

Search Result 1,218, Processing Time 0.022 seconds

Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method

  • Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.453-475
    • /
    • 2009
  • The literature regarding the free vibration analysis of Bernoulli-Euler and Timoshenko beams on elastic soil is plenty, but the free vibration analysis of Reddy-Bickford beams on elastic soil with/without axial force effect using the Differential Transform Method (DTM) has not been investigated by any of the studies in open literature so far. In this study, the free vibration analysis of axially loaded Reddy-Bickford beam on elastic soil is carried out by using DTM. The model has six degrees of freedom at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and two end moments in this study. The governing differential equations of motion of the rectangular beam in free vibration are derived using Hamilton's principle and considering rotatory inertia. Parameters for the relative stiffness, stiffness ratio and nondimensionalized multiplication factor for the axial compressive force are incorporated into the equations of motion in order to investigate their effects on the natural frequencies. At first, the terms are found directly from the analytical solutions of the differential equations that describe the deformations of the cross-section according to the high-order theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the governing differential equations of the motion. The calculated natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil using DTM are tabulated in several tables and figures and are compared with the results of the analytical solution where a very good agreement is observed and the mode shapes are presented in graphs.

Age-related change in shear elastic modulus of the thoracolumbar multifidus muscle in healthy Beagle dogs using ultrasound shear wave elastography

  • Tokunaga, Akari;Shimizu, Miki
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.13
    • /
    • 2021
  • Background: Multifidus muscle stiffness decreases in patients with lumbar intervertebral disk herniation; however, age-related changes in humans have not been reported. Objectives: The reliability of ultrasound shear wave elastography in dogs, and changes in the shear elastic modulus of the thoracolumbar multifidus muscle with aging in dogs, were investigated. Methods: Twelve beagle dogs were divided into 2 groups based on the age of onset of intervertebral disk herniation: young (aged not exceeding 2 years; 1.3 ± 0.6 years old, n = 5) and adult (4.9 ± 1.2 years old, n = 7). The shear elastic modulus of the multifidus muscle, from the thirteenth thoracic spine to the fourth lumbar spine, was measured using ultrasound shear wave elastography. The length, cross-sectional area and muscle to fat ratio of the multifidus muscle, and the grade of intervertebral disk degeneration, were assessed using radiographic and magnetic resonance imaging examinations. Results: The length and cross-sectional area of the multifidus muscle increased caudally. In the young group, the shear elastic modulus of the multifidus muscle of the thirteenth thoracic spine was less than that of the third lumbar spine. In the adult group, the shear elastic modulus of the multifidus muscle of first and third lumbar spine was lower than that of the same site in the young group. Conclusions: Ultrasound can be used to measure shear wave elastography of the thoracolumbar multifidus in dogs. If the multifidus muscle stiffness decreases, we should consider age-related change.

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

Design of Seat Belt Pretensioner driven by Elastic Force (탄성력 기반 안전벨트 프리텐셔너 설계)

  • Yongsu Lee;Seyun Park;Hyuneun Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.545-550
    • /
    • 2023
  • A pretensioner is a safety device that protects occupants by pulling the seat belt in the event of a vehicle collision. However, since the pretensioner is driven by a explosive method, it is necessary to replace not only the gas generator but also all connecting parts including the manifold after an accident. Therefore, in this paper, we propose an elastic force-based pretensioner that can be used safely and semi-permanently. After analyzing the operating mechanism of the existing pretensioner from a thermodynamic/dynamic point of view, the spring stiffness that can be deployed within an appropriate operating time was determined by converting the gas explosion energy into elastic energy. In addition, the coil spring shape that satisfies the elastic stiffness was designed in consideration of the vehicle interior installation standard. Finally, the operating performance of the pretensioner driven by elastic force was verified through fabrication.

A Study on Transferred Load Reduction on Paved Track Roadbed with Low Elastic Base Plate Pad (저탄성 베이스플레이트 패드 적용에 따른 포장궤도 노반에서의 전달하중 저감에 관한 연구)

  • Lee, Il-Wha;Kang, Yun-Suk;Lee, Hee-Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.399-405
    • /
    • 2008
  • Development of the paved track is required as a low-maintenance of conventional line. The paved tracks are one of the types of the ballast reinforced tracks those are manufactured by adopting the prepacked concrete technique. The main elements of this tracks are large sleeper, low elastic pad, fastener, cement mortar, geotextile and recycled ballast. Low elastic pad is the most effective element of such tracks on the basis of stress-displacement characteristics, dynamic response and fatigue characteristics. The stiffness of the pad determine the stiffness of the track. Consequently, it is more important in case of concrete track structure such as paved track because application of low elastic pad seriously effect the durability and stability of the track. The main objective of this study is to confirm the reduction of train load, which transfer to roadbed through various pad effects. To achieve this task static, numerical analysis and real scale repeated loading test was performed while load reduction effect of low elastic pad was analyzed by using displacement, stress and strain ratio characteristics of the paved track.

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

A Study on Settlement according to Height and Ground stiffness on the MSEW on the IPM Bridge (토압분리형 교량의 보강토옹벽의 높이와 기초지반 강성에 따른 침하량 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • The mechanically stabilized earth wall (MSEW) of the IPM bridge is an important structure that constitutes the bridge, and supports the horizontal earth pressure and approach slab. Therefore, it is necessary to carefully analyze the settlement of MSEW of the IPM bridge. This study examined the settlement according to the height and ground stiffness on the MSEW on the IPM Bridge. According to the design guideline, the IPM Bridge (2016) was designed to have a height of 4.0 ~ 10.0m and the elastic settlement was calculated. The base area and the grounding pressure of the MSE wall increased linearly with the height, and the elastic settlement also increased linearly. In addition, the stiffness of the foundations satisfying the allowable settlement of the approach slab is a N value of 35 or more. The settlement of finite element analysis was estimated to be smaller than the elastic settlement, and the stiffness of the foundation ground satisfied the allowable settlement of the approach slab above N value of 20. Because the elastic settlement of the MSEW of the IPM Bridge was overestimated, it will be necessary to examine it carefully by finite element analysis.

A STUDY ON THE CHANGES OF THE ELASTIC PROPERTIES TN LOOPED WIRES BY VARIABLE FACTORS (변환요소에 따른 LOOPED WIRE의 탄성 변화에 관한 연구)

  • Na, Yong-In;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.263-271
    • /
    • 1995
  • The purpose of this study nab to evlauate and compare the effect of the variable factors of wire on the elastic properties of looped rectangular wire. Five variable factors were presented-material(Hi-T, blue Elgiloy), wire size(.016'$\;\times\;$.022', .018'$\;\times\;$.025'), loop length(15mm, 20mm), loop configuration(open loop, closed loop), gabling (non-gable, gable). So, the total 256 specimens were divided into 32 groups, and each of those nab pulled on Instron testing machine. The load-deflection curve of each wire obtained, from which force, range in elastic limit, and stiffness were computed and analyzed statistically. The results were obtained as follows : 1. All of the variable factors - wire material, size, loop length loop configuration, and gabling - took a significant effect on load-deflection rate of looped wire. 2. The force at elastic limit was the smallest in the group of Hi-T, .016'$\;\times\;$.022', 20mm loop length, open loop, non-gable, and the largest in the group of blue Elgiloy, .018'$\;\times\;$.025', 15mm loop length, closed loop, non-gable. 3. The range at elastic limit was the smallest in the group of Hi-T, .018'$\;\times\;$.025', 15mm loop length, open loop, non-gable, and the largest in the group of HI-T, .016'$\;\times\;$.022', 20mm loop length, closed loop, gable. 4. Loop configuration and loop length were the most effective factors on the elastic properties of looped wires, and gabling was the least effective.

  • PDF

Analysis of Elastic Constants in SiC Particulate Reinforced Al Matrix Composites by Resonant Ultrasound Spectroscopy (초음파 공명 분광법(RUS)을 이용한 SiC 입자강화 Al 기지복합재료의 탄성계수 해석)

  • Jung, Hyun-Kyu;Cheong, Yong-Moo;Joo, Young-Sang;Hong, Soon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.180-188
    • /
    • 1999
  • The dynamic elastic properties of metal matrix composites were investigated by resonant ultrasound spectroscopy(RUS). The composites used in this study consisted of 2124 aluminum alloy reinforced with different concentrations of SiC particles. RUS can determine the nine independent elastic stiffness($C_{ij}$) for the orthorhombic symmetry on a small specimen simultaneously. The elastic constants were determined as a function of the volume fraction. A concept of effective aspect ratio. which combine the aspect ratio and the orientation of reinforcement. was used to calculate the initial moduli from Mori-Tanaka theory for the input of RUS minimization code. Young's moduli can be obtained from the measured stiffnesses. The results show that the elastic stiffness increases with increment of the particle content. The behavior of elastic stiffness indicates that the particle redistribution induced by the extrusion process enlarges the transversely isotropic symmetry as the fraction of reinforced particles increase. This relationship could be used for determination of the volume fractions of reinforcement as a potential tool of nondestructive material characterization.

  • PDF

Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.695-702
    • /
    • 2006
  • The stress distribution and the critical stresses in concrete pavements were analyzed using formulations in the transformed field domains when dual-wheel single-, tandem-, and tridem-axle loads were applied. First the accuracy of the transformed field domain analysis results was verified by comparing with the finite element analysis results. Then, the stress distribution along the longitudinal and transverse directions was investigated, and the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were studied. The effect of the tire contact pressure related to the tire print area was also studied, and the location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to multi-axle loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The number of axles did not tend to affect the critical stress ratio except for a small foundation stiffness value with which the critical stress ratio became significantly larger as the number of axles increased. The critical stress location in the transverse direction tended to move into the interior as the tire contact pressure increased, the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.