• Title/Summary/Keyword: elastic properties

Search Result 2,393, Processing Time 0.035 seconds

Evaluation of Radical Scavenging Activity and Physical Properties of Textured Vegetable Protein Fermented by Solid Culture with Bacillus subtilis HA According to Fermentation Time (고초균을 이용한 조직대두단백의 고체 발효 기간에 따른 라디칼 소거 활성 및 물성 평가)

  • Kim, Ji-Eun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Textured vegetable protein (TVP) was fermented by the solid-state fermentation using Bacillus subtilis HA and biologically active compounds were produced by fermentation for 7 days. The longer fermentation time resulted in the color change of fermented TVP with strong dark red and yellow color. Melanoidin production rapidly increased until fermentation for 48 hr, but did change afterwards. The 70% ethanol extract of TVP fermented for 24 hr showed higher DPPH radical scavenging effect with $IC_{50}$ of 0.99 mg/mL but longer fermentation did not increase its activity. Also, 70% ethanol extract of TVP fermented for 72 hr indicated higher ABTS radical scavenging effect with $IC_{50}$ of 1.68 mg/mL. Consistency index in TVP fermented for 48 hr was the highest values with 7.89 $Pa{\cdot}s^n$. Viscoelastic properties of TVP fermented for 48 hr were maximally enhanced, and viscous value (G") is higher than the elastic value (G'). The $\gamma$-polyglutamic acid (PGA) content was increased by increasing fermentation time with 37.72% of $\gamma$-PGA at 168 hr. However, levan content and molecular weight of PGA were decreased with increasing fermentation time from 7.83% to 3.91% and 1649.3 kDa to 1286.8 kDa, respectively.

Muscle Quality of Cultured Olive Flounder, Paralichthys Olivaceus (양식 넙치의 육질에 관한 연구)

  • 이경희;이영순
    • Korean journal of food and cookery science
    • /
    • v.13 no.4
    • /
    • pp.448-452
    • /
    • 1997
  • Sensory and physical qualities and palatable compounds of cultured flounder muscle were compared with the wild ones. No differences were seen in the contents of the moisture, lipid, protein between cultured and wild dorsal muscles, however, sensory panels preferred the wild fish to cultured ones because of the texture and taste of wild fish, and they could differentiate the degree of difference in the texture and taste property distinctly. Raw meat of the wild fish was harder and more elastic than the cultured ones, however, the cultured meat was harder and drier than the wild ones once they were cooked. The results of physical properties were similar to the results of sensory evaluation. Alanine was the most abundant compound among the free amino acids which make meat palatable and followed by glutamic acid, proline, methionine, and glycine. There was no difference in total content of free amino acids between two fish muscles. ATP was the most abundant among all nucleotides and their related compounds in both fish muscles followed by IMP, ADP, AMP, however, the total content of those was greater in wild fish muscle (9.4 ${\mu}$mole/g) than in cultured fish muscle (6.7 ${\mu}$mole/g).

  • PDF

Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application (조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Kim, Ye-Tae;Im, Su-Jin;Garner, John;Fu, Yourong;Park, Ki-Nam;Park, Jeong-Sook;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer diacrylate as a swelling/degradation controller (SDC). For the synthesis of various SDCs that can lead to different degradation and swelling properties, various PLGA-PEG-PLGA triblock copolymers with different LA/GA ratios and different PLGA block lengths were synthesized and modified to have terminal acrylate groups. The resultant hydrogels were flexible and elastic even in the dry state. The in vitro degradation tests showed that the delayed swelling properties of the hydrogels could be modulated by varying the chemical composition of the biodegradable crosslinker (SDC) and the block ratio of SDC/PEG. The histopathologic observation after implantation of hydrogels in mice was performed and evaluated by macrography and microscopy. Any significant inflammation or necrosis was not observed in the implanted tissues. Due to their biocompatibility, elasticity, sufficient swelling pressure, delayed swelling and controllable degradability, the hydrogels could be useful for tissue expansion and other biomedical applications.

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.

Fabrication and Electric Properties of Piezoelectric Cantilever Energy Harvesters Driven in 3-3 Vibration Mode (3-3 진동 모드 압전 캔틸레버 에너지 하베스터의 제조 및 전기적 특성)

  • Lee, Min-seon;Kim, Chang Il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jang, Yong-ho;Choi, Beom-jin;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.263-269
    • /
    • 2017
  • A piezoelectric cantilever energy harvester (PCEH) driven in longitudinal (3-3) vibration mode was fabricated, and its electrical properties were evaluated by varying the resistive load. A commercial PZT piezoelectric ceramic with a high piezoelectric charge constant ($d_{33}$) of 520 pC/N and the interdigitated (IDT) electrode pattern was used to fabricate the PCEH driven in longitudinal vibration. The IDT Ag electrode embedded piezoelectric laminates were co-fired at $850^{\circ}C$ for 2 h. The 3-3 mode PCEH was successfully fabricated by attaching the piezoelectric laminates to a SUS304 elastic substrate. The PCEH exhibited a high output power of 3.8 mW across the resistive load of $100k{\Omega}$ at 100 Hz and 1.5 G. This corresponds to a power density of $10.3mW/cm^3$ and a normalized global power factor of $4.56mW/g^2{\cdot}cm^3$. Given the other PCEH driven in transverse (3-1) vibration mode, the 3-3 mode PCEH could be better for vibration energy harvesting applications.

Effect of Additive, Storage Temperature and Time on the Texture Properties of Baikseolgi (첨가물, 저장온도 및 저장시간에 따른 백설기의 텍스쳐 특성)

  • Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.437-441
    • /
    • 1998
  • The effects of sucrose fatty acid ester (SE, 1% w/w) and glycerin (GL, 1% v/w) additions, storage temperature$(0,\;20\;and\;70^{\circ}C)$, and time $(0{\sim}6\;day)$ on texture properties, hardness(H), cohesiveness(O), chewiness(C) and rheological property(R) of Baikseolgi were studied. The H of Baikseolgi increased sharply in the early stage of storage at 0 and $20^{\circ}C$, while increased gently at $70^{\circ}C$ with increasing storage time. After 6 days of storage, the H of Baikseolgi at $20^{\circ}C$ had a little lower than that at $0^{\circ}C$. However, the H of Baikseolgi at $70^{\circ}C$ was 10.7% of that at $0^{\circ}C$. The addition of GL had greater effect on the reduction of H than that of SE. The H of control, SE and GL additions were 336, 216 and $$174\;g_f, respectively, after 6 days at $70^{\circ}C$. The O of Baikseolgi at $70^{\circ}C$ were higher than those at $0^{\circ}C$. The O of GL added Baikseolgi had the highest value and the second and the third were SE added and control, respectively. The O of Baikseolgi decreased with increasing storage time. The C of Baikseolgi of increased with increasing storage time, which had similar curve patterns to the H of Baikseolgi. Instantaneous stress and equilibrium stress of Baikseolgi decreased with increasing storage temperature. The affection of viscous element increased and that of elastic element decreased with increasing storage temperature.

  • PDF

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Effect of Nanocellulose and Aminated Starch on Tensile and Thermal Properties of Plasticized Starch Film (가소화 전분필름의 강도 및 열적 성질에 미치는 나노셀룰로오스 및 아민화전분의 첨가영향)

  • Kim, Bo-Yeon;Han, Song-Yi;Lee, Sung-Yong;Kim, Young-Kyoon;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.376-384
    • /
    • 2014
  • This study investigated the effect of nanocellulose, such as microfibrillated cellulose (MFC) and cellulose nanocrystal (CNC), and aminated starch on tensile property and thermal stability of plasticized starch film. Glycerol (23 wt%) was used as a plasticizer and nanocelluloses of 1-30 parts per hundred parts of resin (phr) in the basis of plasticized starch were added. Tensile strength and elastic modulus increased with increasing nanocellulose addition amount, whereas elongation at break decreased. Tensile properties of MFC-reinforced starch film were higher than those of CNC-reinforced film. Optimum addition amount of aminated starch, which is commonly used for paper sizing, to improve tensile property of film, was found to be 5%. And 1% addition of aminated starch showed the best effect in the improvement of tensile property of the film. Thermal stability was improved with the addition of MFC to plasticized starch film with and without aminated starch.

Nano-size Study of Surface-modified Ag Anode for OLEDs (표면처리에 의한 유기발광소자(OLED)용 Ag 전극의 Nano-size 효과 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kim, Hyeong-Keun;Jun, Jae-Hyeok;Jeong, Yun-Jong;Kim, Mu-Chan;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Although silver is used for T-OLED (Top emitting organic Light-Emitting Diode) as reflective anode, it is not an ideal material due to its low work function. Thus, we study the effect of annealing and atmospheric pressure plasma treatment on Ag film that increases its work function by forming the thin silver oxide layer on its surface. In this study, we deposited silver on glass substrate using RF sputtering. Then we treated the Ag samples annealing at $300^{\circ}C$ for 30 minutes in atmosphere or treating the atmospheric plasma treatment for 30, 60, 90, 120s, respectively. We measured the change of the mechanical properties and the potential value of surface with each one at a different treatment type and time. We used nano-indenter system and KPFM (Kelvin Probe Force Microscopy). KPFM method can be measured the change of surface potential. The nanoindenter results showed that the plasma treatment samples for 30s, 120s had very low elastic modulus, hardness and Weibull modulus. However, annealed sample and plasma treated samples for 60s and 90s had better mechanical properties. Therefore, plasma treatment increases the uniformity thin film and the surface potential that is very effective for the performace of T-OLED.

Engineering Properties of Permeable Polymer Concrete with Rice-Husk Ash (왕겨재를 혼입한 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan Yong;Youn, Joon Ro;Kim, Kyung Tae;Kim, Young Ik
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.89-96
    • /
    • 1998
  • This study was performed to evaluate the engineering properties of permeable polymer concrete with rice-husk ash. The following conclusions were drawn; 1. The highest sterngth was achieved by 50% filled rice husk-ash permeable polymer concrete, it was increased 24% by compresseve, 123% by tensile and 90% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity was in the range of $1.27{\times}10^5{\sim}1.75{\times}10^5kgf/cm^2$, which was approximately 58~70% of the normal cement concrete. The higher elastic modulus was showed by 50% filled rice-husk ash permeable polymer concrete, relatively. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 3. The ultrasonic pulse velocity was in the range of 2,503~3,083m/sec, which was showed about the same compared to that of the normal cement concrete. The higher pulse velocity was showed by 50% filled rice-husk ash permeable polymer concrete. 4. The water permeability was in the range of $4.612{\sim}5.913{\ell}/cm^2/hr$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability.

  • PDF