• Title/Summary/Keyword: elastic polyester

Search Result 41, Processing Time 0.02 seconds

Effects of Fillers on Mixing and Mechanical Properties of Polymer Concrete (충진재가 폴리머 콘크리트의 배합과 역학적 성질에 미치는 영향)

  • 연규석;김광우;김기성;김관호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.81-91
    • /
    • 1993
  • This study was performed to evalute effects of fillers on the mixing characteristics and mechanical properties of polymer concrete. Two types of unsaturated polyester polymer and two types of epoxy resin were used as binder material, and the portland cement, a fly ash and heavy calcium carbonate were used as filler. Following conclusions were drawn from the research results. 1. Working life of polymer concrete was not affected by filler types, but affected significantly by polymer types and quantities of hardener and catalysts. 2. Without concerning polymer types, use of heavy calcuim carbonate as filler was the best in improving workability.3. The highest strength was achieved by heavy calcium carbonate in using unsaturated polyester resin and by fly ash in using epoxy resin type.4. Elastic modulus was in the range of 2.05X 10-5~2.6X 10-5gf/cm$^2$, which was approximatly 60% of that of cement concrete. Heavy calcium carbonate with unsaturated polyester resin and fly ash with epoxy resin showed relatively higher elastic modulus.

  • PDF

A Study on the Mechanical Properties and Color Fastness of Polypropylene Knit (폴리프로필렌 편성물의 역학적 성능과 염색견뢰도에 관한 연구)

  • Kwon, Myoung-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The purpose of this study was to investigate the mechanical properties and hand values of polypropylene knit and to analyze its color-fastness for light, laundering and abrasion, comparing to nylon and polyester knits. The results of this study were as follows: 1. Polypropylene stretched more with less force than nylon and polyester and its elastic recovery and shape stability were better than nylon and polyester. 2. Polypropylene was more flexible than nylon and polyester. 3. Polypropylene stretched more easily for shearing but its recovery from shearing was less than nylon and polyester. 4. Polyester had smoother surface than nylon and polyester. 5. Polypropylene was compressed more easily than polyester with less force but less than nylon. Its recovery from compression was more than nylon and polyester. 6. Polypropylene had lower KOSHI and SHARI values and higher FUKURAMI value than nylon and polyester. It had better T.H.V. value than nylon but less than! polyester. 7. Color fastness of polypropylene for lanudering, light, and abrasion in wet and dry conditions was good except polypropylene dyed with red color.

Structural Simulation of Wrist Band for Wearable Device According to Design and Material Model

  • Kwon, Soon Yong;Cho, Jung Hwan;Yoo, Jin;Cho, Chul Jin;Cho, Sung Hwan;Woo, In Young;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.226-233
    • /
    • 2018
  • Elastomers based on the thermoplastics are widely used in rubber industries. Thermoplastic elastomers have the advantages of an easy shaping process and elimination of recycling problems. Thermoplastic polyester elastomer (TPE) is used for making rubber bands in wearable devices and its applications are increasing. In this study, five wrist bands were designed and their mechanical behaviors were examined by computer simulation, using hyper elastic models, Mooney-Rivlin and Ogden models, and a linear elastic model. Simulation results were compared and discussed in terms of band design and material model.

A Study on Tricot Textile Design Process using Tricot CAD Program (CAD 프로그램을 활용한 트리코트 텍스타일 디자인 개발 프로세스 연구)

  • Choi, Kyoungme;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.5
    • /
    • pp.1-16
    • /
    • 2015
  • The appearances and geometry structures of knitted fabrics have important effects on their functions as textile fabrics. Structural design of the woven fabric, prior to the manufacturing processes in the weaving mill, often leads to a similar predictable appearance in the final outcome with the corresponding weave design. The increase of the employment of elastic textile yarns in knitting fabrics for comfort stretch or outdoor sports wear knit products has, however, resulted in difficulties in predicting the final appearance of the knit structure design. Due to the stretchability and exceptional recovery behavior of the elastic yarns such as polyurethane elastomeric yarns, the appearance of the final product often differs from the initial knit design. At textile CAD program for preparing tricot knit designs has been employed in this study to predict the two dimensional appearance of the design. The similarities between the designs and corresponding knit products seem to be acceptable for the two-dimensional textile CAD program in this study. However, when elastomeric yarns are partially employed in the polyester filament tricot product, a considerable amount of departure from the design is apparent due to the constriction and/or deformation of property differences in the elastomeric yarns and polyester filament yarns. Therefore, another purpose of this study is to measure the departure of the final tricot product from the initial tricot design, especially in the case employing elastomeric yarns in the knit structure together with regular polyester filament yarns. For measuring the three-dimensional departure, a 3D scanning system has been used for the mesh reconstruction of the fabric specimen. Hopefully, the result from this study will be used as a guide to modify and improve the current textile CAD program proposed for the two-dimensional simulation of the tricot.

Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability - (폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 -)

  • Sung, Chan Yong;Noh, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

Flexural Fatigue Behavior of Unreinforced Polyester Polymer Concrete Beams (무근 폴리에스터 폴리머 콘크리트보의 휨피로 거동)

  • 연규석;박제선;김광우;성기태;김태경
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • 본 연구는 무근 폴리에스터 폴리머 콘크리트보의 휨피로 거동을 구명키 위한 것으로서 초기균열깊이와 높이의 비 (a/h)를 0, 0.2, 0.4로 하고 응력수준을 45%, 55%, 65%로 하여 피로 시험을 실시한 것이다. 그 결과 초기균열깊이가 커질수록 피로수명이 짧아졌으며, 피로수명비에 따른 휨인장변형도는 균열깊이가 클수록 작아졌다. 또한 휨탄성계수는 피로수명비 0.2에서 0.6정도까지는 선형적인 변화를 보였으나, 초기와 말기에는 비선형적인 변화를 보여주었다. 그리고 응력수준과 균열깊이가 커질수록 취성적인 성질이 더 크게 나타남을 알 수 있었다.

Fatigue and Sensorial Properties of Commercially Available Brassiere Wing Materials (시판 브래지어 날개 소재의 피로도 및 질감에 관한 연구)

  • 한은경;신정원;홍경희;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.11
    • /
    • pp.1291-1299
    • /
    • 2003
  • In order to design the better brassiere in terms of appearance and functions, various parameters of the materials should be considered; in this study, fatigue properties and subjective sensation of wing materials and its relation to the preference for a brassiere was investigated. After the survey of commercially available products, five elastic fabrics such as cotton, Modal, polyester, nylon, and Tactel, all of which contain 10% polyurethane, were chosen as specimens. Fabric growth were determined to evaluate fatigue properties. Qmax was determined to evaluate the warm-cool feeling. For the sensory test, semantic differential scale which contains 15 adjectives were developed. Fatigue properties were very similar at the 20% elongation irrespective of the duration of tension, but at 40% and 100% elongation, man made fabric showed less growth than cellulose fabrics. The factor analysis showed four factors such as sense of warmth, smoothness, weight and elasticity. Preference of the specimens was ranked in the order of Tactel>Modal>cotton>nylon>polyester.

The Physical Properties and Warmth retaining of Bedspread Jacquard Fabrics Using Filling Batt Yarn (충전 솜사를 이용한 Bedspread Jaquard 직물의 물성과 보온성)

  • Park, Myung-Soo
    • Fashion & Textile Research Journal
    • /
    • v.9 no.4
    • /
    • pp.445-449
    • /
    • 2007
  • The results of warmth retaining, heat transfer and compressive elastic recovery of the five kinds of bedspread fabrics, which were produced from packing weft of 2700 denier and 3600 denier batt yarn treated with raw material of Polyester $150^D$/48 DTY, are as follows: 1) 3600 denier packing weft showed lover count in compressive elastic recovery than 2700d packing weft, so it took longer time to recover. 2) When packing weft of the same count is used, a sample of packing weft with higher density showed lower recovery. 3) It took 2700d packing weft 30min to get approximately 98% recovery in temperature $30^{\circ}C$. But, 3600d packing weft stayed under 98% recovery in the same temperature. Considering only the result of compressive elastic recovery, we should use 2700d packing weft. 4) The higher the density of packing weft is, the higher warmth retaining becomes. Although sharp increase appeared until 5min, equilibrium was kept without any increase after that time. 5) When 2700d packing weft was used, the maximum warmth retaining was approximately 60% and 64% in the conditions of density 12(thread/in) and 22(thread/in) respectively.

A Study on Pretreatment and Dyeing Characteristics of High-density Two-way Elastic Knitted Fabric using CDP Yarn and PU Yarn (CDP사와 PU사를 사용한 고밀도 양방향 신축성 편물의 전처리 및 염색 특성에 관한 연구)

  • Cho, Hang Sung;Woo, Jang Chang;Lee, Beom Soo
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.224-233
    • /
    • 2022
  • Recently, consumer tastes of various classes at home and abroad prefer comfortable, unadorned, and simple clothing, and the athleisure trend, which can be used freely in daily life as well as exercise, has expanded to overall clothing products. Existing materials used for athleisure are composite knitted fabrics using polyester yarn and PU yarn, which has problems due to a chronic lack of color fastness and contamination by dyes even when PU laminating is applied, making it difficult to apply various colors. There is a quality problem in which deformation of the product occurs due to lack of durability. In this study, CDP yarn(75de/72f) and PU yarn(40de) were selected to commercialize the circular knitting for athleisure using CDP yarn in order to solve the problems that occur in the dyeing and laminating process when using polyester materials. CDP yarns were used to knit into single(CP75-S) and double(CP75-D) knit and single knit were found to be suitable as athleisure fabrics. After pretreatment and treatment under various conditions, the stainability of CDP circular knitting was examined. After pretreatment and dyeing process under various conditions, the property of scouring and dyeability of CP75-S were evaluated.

A Processing and Flexural Performance Evaluation of Hybrid Organic Fiber Reinforced Concrete (하이브리드 유기섬유 보강 콘크리트의 제조 및 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Shim, Jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Organic fiber reinforced concrete is applicable to many applications for construction material. In general, organic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion resistance. In this study, hybrid organic fibers were prepared by mixing polyamide (PA) fibers and high strength polyester (PET) fibers. Then, flexural performance test of fiber reinforced concrete containing hybrid organic fiber was performed. The energy absorption capacity of the hybrid organic fiber reinforced concrete was evaluated.