• 제목/요약/키워드: elastic material behavior

검색결과 626건 처리시간 0.03초

Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection

  • Vosooq, Amir Koorosh;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.881-898
    • /
    • 2013
  • This paper describes analytical investigation into a new dual function system including a couple of shear links which are connected in series using chevron bracing capable to correlate its performance with magnitude of earthquakes. In this proposed system, called Chevron Knee-Vertical Link Beam braced system (CK-VLB), the inherent hysteretic damping of vertical link beam placed above chevron bracing is exclusively utilized to dissipate the energy of moderate earthquakes through web plastic shear distortion while the rest of the structural elements are in elastic range. Under strong earthquakes, plastic deformation of VLB will be halted via restraining it by Stopper Device (SD) and further imposed displacement subsequently causes yielding of the knee elements located at the bottom of chevron bracing to significantly increase the energy dissipation capacity level. In this paper first by studying the knee yielding mode, a suitable shape and angle for diagonal-knee bracing is proposed. Then finite elements models are developed. Monotonic and cyclic analyses have been conducted to compare dissipation capacities on three individual models of passive systems (CK-VLB, knee braced system and SPS system) by General-purpose finite element program ABAQUS in which a bilinear kinematic hardening model is incorporated to trace the material nonlinearity. Also quasi-static cyclic loading based on the guidelines presented in ATC-24 has been imposed to different models of CK-VLB with changing of vertical link beam section in order to find prime effectiveness on structural frames. Results show that CK-VLB system exhibits stable behavior and is capable of dissipating a significant amount of energy in two separate levels of lateral forces due to different probable earthquakes.

A 3-D RBSM for simulating the failure process of RC structures

  • Zhong, Xingu;Zhao, Chao;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.291-302
    • /
    • 2018
  • Rigid body spring method (RBSM) is an effective tool to simulate the cracking process of structures, and has been successfully applied to investigate the behavior of reinforced concrete (RC) members. However, the theoretical researches and engineering applications of this method mainly focus on two-dimensional problems as yet, which greatly limits its applications in actual engineering projects. In this study, a three-dimensional (3-D) RBSM for RC structures is proposed. In the proposed model, concrete, reinforcing steels, and their interfaces are represented as discrete entities. Concrete is partitioned into a collection of rigid blocks and a uniform distribution of normal and tangential springs is defined along their boundaries to reflect its material properties. Reinforcement is modeled as a series of bar elements which can be freely positioned in the structural domain and irrespective of the mesh geometry of concrete. The bond-slip characteristics between reinforcing steel and concrete are also considered by introducing special linkage elements. The applicability and effectiveness of the proposed method is firstly confirmed by an elastic T-shape beam, and then it is applied to analyze the failure processes of a Z-type component under direct shear loading and a RC beam under two-point loading.

구조용 강재의 용접응력 분포에 미치는 작용력의 영향 (Influence of Load on Welding Stress Distribution of Structural Steel)

  • 이상형;장경호
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.555-564
    • /
    • 2004
  • 강교량과 같은 구조물에 일반적으로 사용되는 강재는 부식에 약하며, 박판상 구조를 이룰 수 있다는 특징을 갖고 있다. 따라서, 이와 같은 강교량은 차량하중의 증가, 부식 등과 같은 외적요인에 의해 손상되어지기 쉬우며 그에 따른 보수 보강이 요구된다. 그리고, 강교량과 같은 강재 구조물의 보수 보강 방법들은 일반적으로 절단, 볼팅, 및 용접과정을 수반하게 된다. 그러나, 보수 보강 작업을 위해 행해지는 절단 및 용접에 의해 발생되는 응력 및 변형의 특징에 대해 아직 명확히 밝혀지고 있지 않다. 또한, 기존의 안전진단 방법으로는 용접에 의한 보수 보강 작업중 구조물의 안전을 평가하는 것은 문제가 있다. 따라서, 용접에 의한 보수 보강 작업에 따른 구조물의 안전에 대한 신뢰 및 기본적 자료를 확보하기 위해 절단 및 용접과 같은 입열에 의해 발생하는 응력을 일반화 하였다. 또한, 이와 같은 입열에 의해 발생하는 응력에 미치는 작용하중의 영향을 조사하였다.

다층지반에서 횡하중을 받는 군말뚝의 거동 (Behavior of Pile Groups in Multi-layers Soil under Lateral Loading)

  • 김용문;안광국
    • 한국지반환경공학회 논문집
    • /
    • 제13권3호
    • /
    • pp.85-90
    • /
    • 2012
  • 본 논문은 ABAQUS 유한 요소 프로그램을 사용하여 다층지반(화강풍화토-점토-화강풍화토)에서의 외말뚝과 군말뚝의 횡하중에 대한 영향을 설명한다. 본 연구에서의 변수는 캡이 없는 외말뚝과 캡이 있는 군말뚝으로, 파일의 직경은 0.5m, 길이는 10m인 말뚝을 사용하였다. 수치 해석은 말뚝의 간격을 (s=3D, 4D, 5D) 변화시켜 외말뚝과 군말뚝의 거동을 비교하기 위하여 수행되었다. $1{\times}3$군말뚝(leading pile, middle pile, trail pile)은 각각의 말뚝의 저항분포와 수평저항력을 조사하기 위하여 선정되었다. 점토의 해석모델은 Druker-Prager 구성관계를 이용하였고, 화강풍화토의 물성치는 기존의 논문을 사용하였으며, 말뚝은 탄성 원형 콘크리트로 모델링하였다. 해석 결과, 말뚝의 간격이 넓어짐에 따라 P-multiplier의 값이 leading pile의 영향을 덜 받는 것으로 나타났다. 또한, 단층지반이 다층지반에 비해 수평저항력이 약 4~20% 크게 작용하는 것으로 나타났다.

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로- (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제39권3호
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

IN VITRO EVALUATION OF FRACTURE RESISTANCE OF VARIOUS THICKNESS FIBER- REINFORCED COMPOSITE INLAY FPD

  • Yi Yang-Jin;Yoon Dong-Jin;Park Chan-Jin;Cho Lee-Ra
    • 대한치과보철학회지
    • /
    • 제41권6호
    • /
    • pp.762-771
    • /
    • 2003
  • Statement of problem. In dentistry, the minimally prepared inlay resin-bonded fixed partial denture (FPD) made of new ceromer / fiber-reinforced composite (FRC) was recently introduced. However, the appropriate dimensions for the long-term success and subsequent failure strength are still unknown. Purpose. The aim of this study was to investigate the most fracture-resistible thickness combination of the ceromer / FRC using a universal testing machine and an AE analyzer. Material and Methods. A metal jig considering the dimensions of premolars and molars was milled and 56-epoxy resin dies, which had a similar elastic modulus to that of dentin, were duplicated. According to manufacturer's instructions, the FRC beams with various thicknesses (2 to 4 mm) were constructed and veneered with the 1 or 2 mm-thick ceromers. The fabricated FPDs were luted with resin cement on the resin dies and stored at room temperature for 72 hours. AE (acoustic emission) sensors were attached to both ends, the specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. The AE and failure loads were recorded and analyzed statistically. Results. The results showed that the failure strength of the ceromer/FRC inlay FPDs was affected by the total thickness of the connectors rather than the ceromer to FRC ratio or the depth of the pulpal wall. Fracture was initiated from the interface and propagated into the ceromer layer regardless of the change in the ceromer / FRC ratio. Conclusion. Within the limitations of this study, the failure loads showed significant differences only in the case of different connector thicknesses, and no significant differences were found between the same connector thickness groups. The application of AE analysis method in a fiber-reinforced inlay FPD can be used to evaluate the fracture behavior and to analyze the precise fracture point.

니트소재의 인장변형 특성과 3D 디지털 클로딩 시스템에 의한 외관표현에 관한 연구 (A Study on the Tensile Deformation Characteristics of Knits and Appearance Using 3D Digital Virtual Clothing Systems)

  • 최경미;김종준
    • 패션비즈니스
    • /
    • 제16권2호
    • /
    • pp.151-162
    • /
    • 2012
  • The industry-wide development of digital technologies has also affected the textile and fashion industries immensely. The applications of 3D technology, virtual reality, and/or augmented reality systems have helped to create novel fashion brands based on the marriage of IT and textile/fashion industries. 3D digital virtual clothing systems have been developed to help the textile and fashion industries in terms of the planning, manufacturing, marketing and sales sectors. So far, most of the development effort for the 3d virtual clothing systems has been focused on the woven fabrics. The characteristics of woven fabrics differ from those of knitted fabric. Since the physical structures and mechanical properties of the knitted fabrics are definitely different from those of woven fabrics, the simulation process for the knitted fabrics should follow different approaches. The loops in a knitted fabric deform easily. The deformation results in a readily stretchable fabric appearance. Cloth simulation mostly employs models that approximate the mechanical properties of linear elastic planes. This simulation scheme does not, however, describe well enough the behavior of knitted fabrics, which deviate largely from the linear isotropic material characteristics. This study aims at characterizing the tensile deformation and surface textures of a knitted fabric product. Tensile deformation curves for the wale, course, and bias direction are analyzed. The surface texture of the knitted fabric is analyzed by using a 3-dimensional scanning device.

PVA섬유 보강 CSG 재료의 강도특성 (The Strength Characteristics of PVA Fiber Reinforced CSG Materials)

  • 김광일;김기영;권혁춘;김규원
    • 한국지반공학회논문집
    • /
    • 제29권12호
    • /
    • pp.95-104
    • /
    • 2013
  • 최근 시멘트혼합토(CSG)가 많은 설계 시공에 적용되어지고 있다. CSG재료는 경화 초기엔 흙과 같은 역학적 특성을 보이지만 시간이 경과함에 따라 점차 콘크리트 재료적 특성을 발현하게 된다. 경화된 시멘트혼합토는 작은 변형률에서 최대강도가 발현되고 이 후 급격한 취성파괴에 도달하는 탄성적인 성질을 띠게 된다. 본 연구에서는 이러한 CSG재료의 취성거동특성을 완화하고 상대적으로 취약한 인장성능을 개선하고자 PVA 섬유보강재를 적용하였다. 섬유보강 CSG재료는 재하시 하상시료와 섬유사이의 결합력으로 섬유에 인장력이 발생하여 혼합시료의 인장강도 증가와 급작스런 취성파괴발생을 방지할 수 있다. 실험결과 섬유보강만으로도 CSG재료의 응력-변형특성을 취성파괴에서 연성파괴로 유도할 수 있으며, 섬유보강에 의한 잔류강도 증가효과를 확인 할 수 있었다.

복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구 (A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures)

  • 최정호
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.139-145
    • /
    • 2019
  • 이 논문은 복합 입체형 트러스 단위구조체에 대한 강도 및 강성을 연구하였다. 사용된 모델은카고메 모델과 정육면체 트러스 모델을 합한 core-filled 모델이다. 해석을 위해 사용한 재질 특성은 304 스테인레스 스틸로 탄성계수는 193GPa, 항복응력 215MPa이다. 이론식은 깁슨-애쉬비의 상대탄성 관계식을 바탕으로 이론식을 유도하였고, 상용도구인 Deform 3D를 사용하여 해석을 실시하였다. 결론적으로 이 단위모델에 대한 상대탄성력은 상대밀도의 1.25배와 상수 계수값과 상관관계를 형성하고, 탄성은 기공과 반비례한다. 그리고, 상대압축강도는 상대밀도와 1.25배의 상관관계를 이룬다. 이에 대한 증명은 실제 실험을 해야 하겠으며, 유도한 이론 관계식은 굽힘과 좌굴등의 기계적 거동을 추가로 고려해야 한다. 앞으로 입체공간의 구조에 따른 탄성 및 응력에 대해 지속적인 연구가 진행될 것이다.