• Title/Summary/Keyword: elastic loss

Search Result 240, Processing Time 0.027 seconds

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

Insertion loss by bubble layer surrounding a spherical elastic shell submerged in water (수중의 구형 탄성 몰수체를 둘러싼 기포층에 의한 삽입손실)

  • Lee, Keunhwa;Lee, Cheolwon;Park, Cheolsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • Acoustic radiation from a submerged elastic shell with an internal fluid surrounded by the bubble layer is studied with the modal theory. An omni-directional point source located on the center of the internal fluid is used as acoustic noise source. The unknown coefficients of modal solutions are solved using the interface conditions between media. To preserve the stability of the modal solution over wide frequency ranges, the scaled technique of modal solution is used. The bubble layer is modeled with four kinds of bubble distribution; uni-modal distribution, uniform distribution, normal distribution, and power-law distribution, based on the effective medium theory of Commander and Prosperetti. For each bubble distribution, the insertion losses are mainly calculated for the frequency. In addition, the numerical simulations are performed depending in the bubble void fraction, the material property of elastic shell, and the gap between the bubble layer and the elastic shell.

A Study on the Vibration Reduction Characteristics of the Elastic Rail Fastener/Ballast Mat (방진체결구/방진매트의 진동저감특성에 관한 연구)

  • 엄기영;황선근;고태훈;김정근
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.375-380
    • /
    • 2001
  • Generally, countermeasures for the train-induced vibration are divided into the measures at the source, propagation path and receiving object. Among these measures the countermeasure at the source location is the most active and effective one in the field of railroad. In this study, the effectiveness of each anti-vibration measures at the track(source location) such as elastic rail fastener, ballast mat were evaluated through the comparison of acceleration level, insertion loss at the installed locations of each measures. As result of field measurement of vibration at the railroad track supporting structures and on the ground nearby the structures, elastic rail fastener showed vibration reduction effect of 4.5 ∼7.3㏈ on the concrete slab, 1.6∼3.7㏈ on the ground with the train operation speed of 80km/hr. In the case of ballast mat, the vibration reduction effect at the concrete slab and on the ground were 11.9∼13.3㏈ and 6.1∼7.6㏈, respectively.

  • PDF

Fabrication of Silver Flake Powder by the Mechanical Milling Process (기계적 밀링공정에 의한 은 플레이크 분말 제조)

  • Jeong, Hae-Young;Lee, Gil-Geun
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.

A Study on the Estimation of Temperature in Track Components due to Hystresis Loss. (히스테리시스 손실에 의한 괘도부품의 온도 추정에 관한 연구)

  • Kim, H.J.;Kim, B.T.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.48-55
    • /
    • 2001
  • In many applications. rubber components undergo dynamic stresses or deformations of fairly large magnitude. Since rubbers are not fully elastic, a part of the mechanical energy is converted into heat due to the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build up. i. e. internal temperature rise. The purpose of this paper is to predict temperature rise caused by the hysteresis loss, in a rubber pad subjected to complex dynamic deformation. In this unsteady thermal analysis, the temperature distributions of track components are displayed in contour shapes and the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

  • PDF

Sound Transmission Loss of Double Panels : II. Double Panels with Porous Materials (이중판의 차음손실 : II. 다공질재 이중판)

  • 강현주;이정권;김현실;김재승;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.634-642
    • /
    • 1998
  • This paper deals with the analytical model of an elastic porous material in sound transmission loss of a double panel with fiber glasses. From the parametric analysis, it is concluded that the boundary condition, which is concerned to the contact between the skin panel and core materials, does not have much influence on sound transmission loss of a double panel with fiber glasses, and material properties of the porous material become, however, important factors to mass-spring-mass resonance. The comparisons of the prediction with the measurement of sound transmission loss of walls show good agreement between the two values.

  • PDF

A Study of Dynamic Viscoelastic Properties on Temperatures of Natural Rubber (천연고무의 온도에 따른 동적 점탄성 연구)

  • Lee, Bum-Chul;Yoo, Kil-Sang
    • Elastomers and Composites
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 1997
  • The change of elastic modulus(E'), loss modulus(E"), and loss $tangent(tan{\delta})$ were investigated on condition of double strain amplitude (DSA) at temperature of $-40{\sim}80^{\circ}C$ for carbon black filled natural rubber. E', E", and $tan{\delta}$ were increased as it closed to the glass transition temperature due to decrease of rubber network flexibility and carbon black agglomerate interaction. In the micro strain range, energy loss showed maximum value because of the chain slippage in rubber matrix, but the regeneration of carbon black agglomerate and rubber matrix affected decrease of energy loss over the mid-range strain. As a results of regression analysis, $E'\;_{max}$ correlation with ${\Delta}E'$ $(E'\;_{0.4%DSA}-E'\;_{2.0%DSA})$ showed linear relationship.

  • PDF

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

A simplified theory of adaptive bone elastic beam buckling

  • Ramtani, Salah;Bennaceur, Hamza;Outtas, Toufik
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.211-225
    • /
    • 2014
  • The usual assumption that the increase of fractures in aging bone is due entirely to lower bone density is taken back with respect to the possibility that aging bone fractures result from a loss of stability, or buckling, in the structure of the bone lattice. Buckling is an instability mode that becomes likely in end-loaded structures when they become too slender and lose lateral support. The relative importance of bone density and architecture in etiology bone fractures are poorly understood and the need for improved mechanistic understanding of bone failure is at the core of important clinical problems such as osteoporosis, as well as basic biological issues such as bone formation and adaptation. These observations motivated the present work in which simplified adaptive-beam buckling model is formulated within the context of the adaptive elasticity (Cowin and Hegedus 1976, Hegedus and Cowin 1976). Our results indicate that bone loss activation process leads systematically to the apparition of new elastic instabilities that can conduct to bone-buckling mechanism of fracture.

Energy Exchanges and Adhesion Probability of Lennard-Jones Cluster Colliding with a Weakly Attractive Static Surface (클러스터-표면 충돌시 부착 확률과 에너지 교환에 대한 분자동력학 시물레이션)

  • Jung, Seung-Chai;Suh, Dong-Uk;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1788-1793
    • /
    • 2008
  • Classical molecular dynamics simulations (MDS) were conducted to simulate nano-sized cluster collisions with a weakly attractive static surface. Energy exchanges associated with the cluster collision and the adhesion probability are discussed. Routes of the energy exchanges and the kinetic energy loss are vastly altered in their mode according to the cluster incident velocity. In the elastic collision regime ($V_0$<0.1), most incident kinetic energy is recovered into the rebounding kinetic energy, but a little loss in the incident kinetic energy causes the cluster adhesion. Dissipated kinetic energy is converted into the rotational energy. In the weakly plastic collision regime (0.1<$V_0$<0.3), the transition from elastic to plastic collision occurs, and a large part of the released potential energy is converted into rebounding translational energy. For strongly plastic collisions ($V_0$>0.3), permanent cluster deformation occurs with extensive collapse of the lattice structure inducing a solid-to-solid phase transition; moreover, most of the cluster kinetic energy is converted into cluster potential and thermal energy.

  • PDF