• Title/Summary/Keyword: elastic foundation

Search Result 749, Processing Time 0.03 seconds

An Experimental Study on the Mixing and Mechanical Properties of Artificial Lightweight Aggregate(ALA) Concrete (인공경량골재 콘크리트의 배합과 역학적 성상에 관한 실험적 연구)

  • 김화중;김태섭;전명훈;안상건
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.99-104
    • /
    • 1991
  • It is necessary to generalize the use for structural ALA Concrete in our country, as increasing in the need for the development of ALA and the use of ALA Concrete which is related with the diminution of the self load and foundation section of structure responding to the realistic requirement against the decrease of natural aggregate and the high-rising and large-sizing of structures. This little study, therefore intended to help in the mixing design of concrete by considering the fundamental properties of ALA Concrete used with expanded clay, which is considered by acopting the experimental factors such as unit cement content, water cement ratio and the rate of fine aggregate. By considering the results of this experiment, it has difficulty in getting expected slump with the unit water content of normal concrete because of the large absorption of lightweight aggregate, and because the weight of unit volume and specific gravity ALA Concrete are small it appears that the strength and Elastic Modulus of that are small too and that it is more ductile than normal concrete.

  • PDF

Load analysis of an offshore monopile wind turbine using fully-coupled simulation (Fully-coupled 시뮬레이션을 이용한 해상 monopile 풍력 발전기의 응력해석)

  • Shi, Wei;Park, Hyun-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.480-485
    • /
    • 2009
  • Offshore wind energy is gaining more attention. Ensuring proper design of offshore wind turbines and wind farms require knowledge of the external conditions in which the turbines and associated facilities are to operate. In this work, a three-bladed 5MW upwind wind turbine, which is supported by the monopile foundation, is studied by use of fully coupled aero-hydro-servo-elastic commercial simulation tool, 'GH-Bladed'$^{(R)}$. Specification of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Design Load case 5.2 is investigated in this work. The steady state power curve and power production loads are evaluated. Comparison between different codes is made.

  • PDF

The Static Performance Analyses of Air Foil Journal Bearings Considering Three-Dimensional Structure of Bump Foil (범프포일의 3차원 형상을 고려한 공기 포일저널베어링의 정특성 해석)

  • Lee, Dong-Hyun;Kim, Young-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.256-262
    • /
    • 2005
  • The calculation of bump foil deflection is very important to predict the performance of foil bearings more accurately, because the foil bearings consist of top foil and its elastic foundation usually called bump foil. For the purpose of this, a finite element model considering 3-dimensional structure of the bump foil is developed to calculate the deflection of inter-connected bump. The results obtained from the suggested model are compared and analyzed with those from the previous proposed deflection models. In addition, load capacity of the foil bearings is analyzed by using this model.

Lateral capacity of piles in layered soil: a simple approach

  • Mandal, Bikash;Roy, Rana;Dutta, Sekhar Chandra
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.571-584
    • /
    • 2012
  • Appropriate assessment of lateral capacity of pile foundation is known to be a complex problem involving soil-structure interaction. Having reviewed the available methods in brief, relative paucity of simple and rational technique to evaluate lateral capacity of pile in layered soil is identified. In this context, two efficient approaches for the assessment of lateral capacity of short pile embedded in bi-layer cohesive deposit is developed. It is presumed that the allowable lateral capacity of short pile is generally dictated by the permissible lateral displacement within which pile-soil system may be assumed to be elastic. The applicability of the scheme, depicted through illustration, is believed to be of ample help at least for practical purpose.

Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.421-437
    • /
    • 2018
  • Free vibration analysis of a three-layered microbeam including an elastic micro-core and two piezo-magnetic face-sheets resting on Pasternak's foundation are studied in this paper. Strain gradient theory is used for size-dependent modeling of microbeam. In addition, three-unknown shear and normal deformations theory is employed for description of displacement field. Hamilton's principle is used for derivation of the governing equations of motion in electro-magneto-mechanical loads. Three micro-length-scale parameters based on strain gradient theory are employed for prediction of vibrational characteristics of structure in micro-scale. The results show that increase of three micro-length-scale parameters leads to significant increase of three natural frequencies especially for increase of second micro-length-scale parameter. This result is according to this fact that stiffness of a micro-scale structure is increased with increase of micro-length-scale parameters.

Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis

  • Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.471-486
    • /
    • 2020
  • Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical buckling loads are increased.

Analysis of non-homogeneous orthotropic plates using EDQM

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.295-316
    • /
    • 2017
  • Element based differential quadrature method (EDQM) has been applied to analyze static, stability and free vibration of non-homogeneous orthotropic rectangular plates of variable or stepped thickness. The Young's modulus and the density are assumed to vary in exponential form in X-direction whereas the thickness is assumed to vary linear, parabolic or exponential variation in one or two directions. In-plane loading is assumed to vary linearly. Various combinations of clamped, simply supported and free edge conditions (regular and irregular boundary) have been considered. Continuous plates could also be handled with ease. In this paper, formulation for equilibrium, buckling and free vibration problems is discussed and several numerical examples are solved using EDQM and compared with the published results.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Dynamic Behavior of the Bridge Retrofitted by Restrainer under Seismic Excitations (Restrainer로 보강된 교량의 지진하중에 대한 거동특성분석)

  • 김상효;마호성;이상우;원정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.177-186
    • /
    • 1999
  • Dynamic Characteristics of the bridge motions under seismic excitations are analyzed by adopting multi degree - of - freedom system to estimate the effect of restrainers. The applied restrainer is assumed to be a dead - band - system, which has the force clearance and the linear elastic force. The inelastic behaviors of pier and foundation motions are also considered in the study. It is found that the major effect of restrainer is to remarkably decrease the relative displacement between adjacent girders. It is found that restrainers placed on the parts of the bridge system rather than the whole system may increase the unseating failure.

  • PDF

Estimation Of Footing Settlement In Sand (사질토 지반에서의 얕은기초 침하량 해석)

  • Lee, Jun-Hwan;Park, Dong-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.44-49
    • /
    • 2004
  • The settlements of footings in send are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Calculations are made for both normally consolidated and heavily overconsolidated sands with various relative densities. For each case, the cone penetration resistance qc is calculated using CONPOINT, a widely tested program that allows computation of qc based on cavity expansion analysis. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

  • PDF