• Title/Summary/Keyword: elastic displacement

Search Result 1,044, Processing Time 0.038 seconds

Stiffness Modeling of a Low-DOF Parallel Robot (저자유도 병렬형 로봇의 강성 모델링)

  • Kim, Han-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • This paper presents a stiffness modeling of a low-DOF parallel robot, which takes into account of elastic deformations of joints and links, A low-DOF parallel robot is defined as a spatial parallel robot which has less than six degrees of freedom. Differently from serial chains in a full 6-DOF parallel robot, some of those in a low-DOF parallel robot may be subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each serial chain can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness of an F-DOF parallel robot can be modeled such that the moving platform is supported by 6 springs related to the reciprocal screws of actuations (F) and constraints (6-F). A general $6{\times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints, The compliance of each spring can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; a link is modeled as an Euler beam and the compliance matrix of rotational or prismatic joint is modeled as a $6{\times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is infinite. By summing joint and link compliance matrices with respect to a reference frame and applying unit reciprocal screw to the resulting compliance matrix of a serial chain, the compliance of a spring is determined by the resulting infinitesimal displacement. In order to illustrate this methodology, the stiffness of a Tricept parallel robot has been analyzed. Finally, a numerical example of the optimal design to maximize stiffness in a specified box-shape workspace is presented.

Experimental Study of the End-plate Gap Effect on the Performance of Extended End-plate Type Splice (이음면 이격이 확장형 단부판 이음부 성능에 미치는 영향에 대한 실험적 연구)

  • Kim, Cheol Hwan;Lee, Myung Jae;Kim, Hee Dong;Kim, Sa Bin
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.427-438
    • /
    • 2016
  • This study is experimental research for the effect of gap at the end plate on the performance of extended end-plate type splice. For this research, simple beam type specimens by using extended end-plate type splice are planned. Main variables are the initial gap between end-plates, the installation of finger shim plate before the installation of high tension bolts, the final gap between end-plates, and the installation of finger shim plate after the installation of high tension bolts. The static loading tests results show that the maximum bending strength of splice is not dependent on the gap, but the vertical displacement, initial stiffness and elastic stiffness are affected by the gap. In addition to that, the possibility of brittle fracture is increased when the torque of high tension bolt is used to control the gap. Thus, careful consideration is needed in this case.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I) (단부 경계조건을 고려한 매설관의 동적응답 해석 (I))

  • Jeong, Jin-Ho;Lee, Byong-Gil;Park, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF

Lateral-Torsional Buckling Analysis of the Circular Arches Using Unsymmetric Thin-Walled Beam Elements (비대칭(非對稱) 박벽(薄壁)보 요소(要素)를 이용(利用)한 원형(圓形) 아치의 횡좌굴(橫挫屈) 해석(解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.39-52
    • /
    • 1993
  • For the lateral-torsional buckling analysis of the thin-walled space frame and circular arch with the unsymmetric cross section, the tangent stiffness matrices are derived by introducing Vlasov's assumption for the thin-walled beam and using the principle of virtual displacement. In the cases of the unrestrained torsion and the restrained torsion, the elastic and geometric stiffness matrices corresponding to semitangential rotation and semitangential moment are evaluated by using the Hermitian polynomials as the shape function. In order to illustrate the accuracy and convergence characteristics of the derived formulations, numerical examples for the lateral-torsional buckling analysis of the hinged circular arch under pure bending and uniform compression are presented and compared with the analytic solutions of references.

  • PDF

Prediction of Cement Volume for Vertebroplasty Based on Imaging and Biomechanical Results

  • Lee, Sung-Jae;Tack, Gye-Rae;Lee, Seung-Yong;Jun, Bong-Jae;Lim, Do-Hyung;Shin, Jung-Woog;Kim, Jeong-Koo;Shin, Kyu-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1041-1050
    • /
    • 2001
  • Control of bone cement volume (PMMA) may be critical for preventing complications in vertebroplasty, the percutaneous injection of PMMA into vertebra. The purpose of this study was to predict the optimal volume of PMMA injection based on CT images. For this, correlation between PMMA volume and textural features of CT images was examined before and after surgery to evaluate the appropriate PMMA amount. The gray level run length analysis was used to determine the textural features of the trabecular bone. Extimation of PMMA volume was done using 3D visualization with semi-automatic segmentation on postoperative CT images. Then, finite element (FE) models were constructed based on the CT image data of patients and PMMA volume. Appropriate material properties for the trabecular bone were assigned by converting BMD to elastic modulus. Structural reinforcement due to the changes in PMMA volume and BMD was assessed in terms of axial displacement of the superior endplate. A strong correlation was found between the injected PMMA volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT images (r=0.90 and -0.90, respectively). FE results suggested that vertebroplasty could effectively reinforce the osteoporotic vertebra regardless of BMD or PMMA volume. Effectiveness of additional PMMA injection tended to decrease. For patients with BMD well lower than 50mg/ml, injection of up to 30% volume of the vertebral body is recommended. However, less than 30% is recommended otherwise to avoid any complications from excessive PMMA because the strength has already reached the normal level.

  • PDF

Instability Analysis of Unsaturated Soil Slope Considering Wet Condition (습윤상태를 고려한 불포화 토사사면의 불안정성 해석)

  • Kim, Yong Min;Kim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1489-1498
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate the effect of antecedent rainfall which is assumed by initial conditions varying degree of saturation (36, 51, 77%) in finite element analysis. The distributions of matric suction and deformation on slope surface obtained from numerical simulation show the instability of antecedent rainfall-induced unsaturated soil slope. Moreover, the numerical analysis using Drucker-Prager model can be checked if a soil slope has reached failure (trial failure criterion $f^{tr}$ >0, plastic behavior) or not (trial failure criterion $f^{tr}$ < 0, elastic behavior). It is found that displacement of slope surface layer increases and the matric suction on soil slope decreases with an increase of initial degree of saturation by antecedent rainfall. Especially, the matric suction of the soil slope in dry condition (S=36%) rapidly decreases rather than that in wet condition (S=51%) at the same rainfall duration. The results of the trial failure criterion ($f^{tr}$ > 0) show slope instability in the toe region and surface of the slopes.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.

Quasi-Static Structural Optimization Technique Using Equivalent Static Loads Calculated at Every Time Step as a Multiple Loading Condition (매 시간단계의 등가정하중을 다중하중조건으로 이용한 준정적 구조최적화 방법)

  • Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2568-2580
    • /
    • 2000
  • This paper presents a quasi-static optimization technique for elastic structures under dynamic loads. An equivalent static load (ESL) set is defined as a static load set which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at every time step are employed to represent the various states of the structure under the dynamic load. They can cover every critical state that might happen at an arbitrary time. Continuous characteristics of dynamic load are simulated by multiple discontinuous ones of static loads. The calculated sets of ESLs are applied as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. Design cycles are repeated until a design converges. The analysis domain gives a loading condition necessary for the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. This iterative process is quite similar to that of the multidisciplinary optimization technique. Even though the global convergence cannot be guaranteed, the proposed technique makes it possible to optimize the structures under dynamic loads. It has also applicability, flexibility, and reliability.

A Study on the Design of the Keel in the Energy Storing Prosthetic Foot Using the Finite Element Analysis and the Taguchi Method (유한요소해석과 다구찌방법을 이용한 에너지 저장형 의족용골의 설계에 관한 연구)

  • Lee, Dong-Hui;Jang, Tae-Seong;Lee, Jeong-Ju;Yun, Yong-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.613-624
    • /
    • 2000
  • In this study, new design method of prosthetic foot was suggested which can evaluate the performance of prosthetic foot by implementing amputee's gait simulation using the finite element analysis. The basic shape of ESPF(Energy Storing Prosthetic Foot) was designed which is suitable for the below-knee amputee considering mechanical properties and kinematic properties. And, the performance evaluations were performed using the Taguchi method with orthogonal array L25. As a result, average main effect of factors for the ESPF's performance were calculated and then optimum condition of given shape was selected. Essential particulars for the performance evaluation from the simulation result were the quantity of external work needed in stance phase, the quantity of transferred energy from the ESPF through the knee, and the vertical displacement of knee at toe-off. Reasonable optimum condition was obtained from the using performance index. From this study, it was found that it is necessary for the design of ESPF to consider the geometrical data related to the magnitude of load on elastic material.

A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures (적층내 탄성 유도초음파의 모드 특성에 관한 연구)

  • Cho, Youn-Ho;Lee, Chong-Myoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.211-216
    • /
    • 2008
  • In this study, we have developed a program which can calculate phase and group velocities, attenuation and wave structures of each mode in multi-layered plates. The wave structures of each mode are obtained, varying material properties and number of layers. The key in the success of guided wave NDE is how to optimize the mode selection scheme by minimizing energy loss when a structure is in contact with liquid. In this study, the normalized out-of-plane displacements at the surface of a free plate are used to predict the variation of modal attenuation and verily the correlation between attenuation and wave structure. It turns out that the guided wave attenuation can be efficiently obtain from the out-of-plane displacement variation of a free wave guide alleviating such mathematical difficulties in extracting complex roots for the eigenvalue problem of a liquid loaded wave guide. Through this study, the concert to optimize guided wave mode selection is accomplished to enhance sensitivity and efficiency in nondestructive evaluation for multi-layered structures.