• Title/Summary/Keyword: elastic curve

Search Result 458, Processing Time 0.029 seconds

Study on Plastic Deformation of Interior Support at the Continuous I-Beam Bridge (I-Beam연속교 내측지점의 소성변형에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.146-152
    • /
    • 2002
  • The steel shows plastic deformation after the yield point exceeds. Because of overloads, the plastic deformation occurs at the interior support of a continuous bridge. The plastic deformation is concentrated at the interior support, and the permanence deformation at the interior support remains after loads pass. Because local yielding causes the positive moment at the interior support, it is called "auto moment". Auto moment redistributes the elastic moment. Because of redistribution, auto moment decreases the negative moment at the interior support of a continuous bridge. In this paper, the moment-rotation curve from Schalling is used. The Plastic rotation is computed by using Beam-line method, and auto moment is calculated based on the experiment curve. The design example is presented using limit state criterion.

Nonlinear finite element analysis of torsional R/C hybrid deep T-beam with opening

  • Lisantono, Ade
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.399-410
    • /
    • 2013
  • A nonlinear finite element analysis of R/C hybrid deep T-beam with web opening subjected to pure torsion is presented. Hexahedral 8-nodes and space truss element were used for modeling concrete and reinforcement. The reinforcement was assumed perfectly bonded to the corresponding nodes of the concrete element. The constitutive relations for concrete and reinforcement are based on the modified field theory and elastic perfectly plastic. The smear crack approach was adopted for modeling the crack. The torque-twist angle relationship curve based on the finite element analysis was compared to the experimental results. The comparison shows that the curve of torque-twist angle predicted by the nonlinear finite element analysis is linear before cracking and close to the experimental result. After cracking, the curve becomes nonlinear and stiffer compared to the experimental result.

A Study on HIGH TEMPERATURE FRACTURE TOUGHNESS of Pressure Vessel Steel SA516 at High Temperature. (압력용기용강의 고온파괴인성에 관한 연구)

  • 박경동;김정호
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.228-231
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{1c}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are operated at high temperature and $J_{1c}$ values are affected by temperature. therefore, the $J_{1c}$ valuse at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{1c}$ tests were performed on SA516 carbon steel plate and test results were analyzed according to ASTM E 813-8, ASTM 1813-89. Safety and integrity are required for reactor pressure vessels vecause pthey are operated in high temperature. there are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness$(J_{1c})$ and $J-\Delta{a}$ of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room Temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ according to unloading compliance method.

  • PDF

Evaluation on High Temperature Fracture toughness of Pressure Vessel SA516/70 Steel (압력용기용 SA516/70강의 고온파괴인성평가)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.99-104
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{lc}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are$J_{lc}$ $J_{lc}$ value at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{lc}$ tests were performed on SA516/70 carbon steel plate and test results were analyzed according to ASTM E 813-87, ASTM E 813-89 and ASTM E 1152-87.safety and integrity are required for reactor pressure vessels because, they are operated in high temperature. There are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness($J_{lc}$) and J-$\Delta$a of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ according to unloading compliance method.

  • PDF

Numerical and analytical investigation of cyclic behavior of D-Shape yielding damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari;Sasan Kiasat;Kaveh Cheraghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.411-420
    • /
    • 2024
  • The purpose of this research was to investigate the cyclic behavior of the D-shaped dampers (DSD). Similarly, at first, the numerical model was calibrated using the experimental sample. Then, parametric studies were conducted in order to investigate the effect of the radius and thickness of the damper on energy dissipation, effective and elastic stiffness, ultimate strength, and equivalent viscous damping ratio (EVDR). An analytical equation for the elastic stiffness of the DSD was also proposed, which showed good agreement with experimental results. Additionally, approximate equations were introduced to calculate the elastic and effective stiffness, ultimate strength, and energy dissipation. These equations were presented according to the curve fitting technique and based on numerical results. The results indicated that reducing the radius and increasing the thickness led to increased energy dissipation, effective stiffness, and ultimate strength of the damper. On the other hand, increasing the radius and thickness resulted in an increase in EVDR. Moreover, the ratio of effective stiffness to elastic stiffness also played a crucial role in increasing the EVDR. The thickness and radius of the damper were evaluated as the most effective dimensions for reducing energy dissipation and EVDR.

Development and performance evaluation of traction system for steep gradient and sharp curve track (급구배 및 급곡선 궤도 추진시스템 개발 및 성능 평가)

  • Seo, Sungil;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.493-501
    • /
    • 2016
  • In this study, core technologies of a traction system on a mountain tram operating on the track of mountain road full of sharp curves and steep gradients were developed. In domestic mountain resort areas, sometimes the transportation service is not provided in winter because of ice and heavy snow on roads, so a mountain railway service independent of the climate and geographic conditions is needed. A traction system was designed taking into account of the power of a traction motor to climb the gradient of 120 ‰, which is common in domestic mountainous areas. and power transmission system was designed to consider the installation space for the traction system. In addition, a reduction gear and a propeller shaft were developed. An elastic pinion was developed and applied to the rack & pinion bogie system for steep gradient so that noise and vibration generated by contact between the steel gears could be reduced. Impact comparison tests showed that the vibration level of the elastic pinion is one-third lower than that of previous steel pinion. Independent rotating wheels and axles were developed for the bogie system to operate on the sharp curve of a 10 meter radius. In addition, the band braking system was developed to enhance the braking force during running on the steep gradient. A test for the braking force showed it exerts the required braking force. The performance of the developed core components were verified by the tests and finally they were applied to the bogie system running on the track of steep gradient and sharp curve.

Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature (316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토)

  • Lim Jae-Yong;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.

Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models (주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델)

  • 고승기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

A Study on the Effect of Temperature on the Elastic-Plastic Fracture Toughness $J_{IC}$ of Materials (I) - A Comparative Study of $J_{IC}$ Test Methods Recommended by ASTM and JSME - (재료의 탄소성 파괴인성치 $J_{IC}$의 온도 의존성에 관한 연구 I - AST과 JSME의 $J_{IC}$ 시험법에 관한 비교연구 -)

  • 석창성;최용식;양원호;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 1989
  • Elastic-plastic fracture toughness J$_{IC}$ can be used as an effective design criterion in elastic plastic fracture mechanics. In the J$_{IC}$ test methods approved by ASTM and JSME, there are discrepancies such as the definition of J$_{IC}$, the slope of the blunting line, curve fitting method and the measurement of crack extension etc. The objective of this paper is to evaluate the effect of these discrepancies on the determination of J$_{IC}$ values. Fracture toughness tests were performed on A516, SA508 and SCM415 steels, and test results were analyzed according to ASTM E 813-81, ASTM E 813-87 and JSME S 001-1981. Results showed significant differences depending on the analysis methods. Therefore, a conversion equation between two ASTM methods was proposed, and the conversion error was within acceptable range(less then 8.5%)en 8.5%)

Effect of Temperature and Aging on the Relationship Between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정 탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근;박우선;김동현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.610-618
    • /
    • 2001
  • This paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model of the relationships we proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperatures of 10, 23, and 50$\^{C}$ Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus according to cement type, temperature and aging. The proposcd relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type md temperature.