• Title/Summary/Keyword: elastic circular plate

Search Result 70, Processing Time 0.02 seconds

Analysis of Stratified Rock under Vertical Load in Pile Foundation of Wind Turbine Using Circular Foundation Analysis Method with Equivalent Effective Width (등가유효폭을 가진 원형기초해석법을 이용한 풍력발전기 말뚝기초의 연직하중에 대한 층상암반 해석)

  • Kim, Dohan;Park, Sangyeol;Moon, Kyoungtae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2411-2425
    • /
    • 2013
  • In the design of pile foundation on the rock layer in the stratified structure with sedimentary and rock layers, the structural analysis of the stratified rock layer is required to determine the failure modes (flexural failure, punching shear failure or end bearing failure) and the bearing capacity of the rock layer. However, the existing usable Elastic Plate Analysis Method (EPAM) suggested by ACI committee 436 and Korean Code Requirements for Structural Foundation Design is very complex, and engineers have many difficulties in using it. Therefore, in this research, we proposed the relatively simple Circular Foundation Analysis Method (CFAM) with the concept and the equation of the equivalent effective width (radius) instead of the complex EPM, and the related equations of bending moment and shear force to be equal to the analysis results of EPAM. As a result, the proposed CFAM using the equivalent effective width (radius) is simple and convenient to use, and the analysis results of it are very good in their accuracies comparing those of EPAM and Finite Element Method.

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.181-187
    • /
    • 2018
  • In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.

Numerical study on buckling of steel web plates with openings

  • Serror, Mohammed H.;Hamed, Ahmed N.;Mourad, Sherif A.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1417-1443
    • /
    • 2016
  • Cellular and castellated steel beams are used to obtain higher stiffness and bending capacity using the same weight of steel. In addition, the beam openings may be used as a pass for different mechanical fixtures such as ducts and pipes. The aim of this study is to investigate the effect of different parameters on both elastic and inelastic critical buckling stresses of steel web plates with openings. These parameters are plate aspect ratio; opening shape (circular or rectangular); end distance to the first opening; opening spacing; opening size; plate slenderness ratio; steel grade; and initial web imperfection. The web/flange interaction has been simplified by web edge restraints representing simply supported boundary conditions. A numerical parametric study has been performed through linear and nonlinear finite element (FE) models, where the FE results have been verified against both experimental and numerical results in the literature. The web plates are subject to in-plane linearly varying compression with different loading patterns, ranging from uniform compression to pure bending. A buckling stress modification factor (${\beta}$-factor) has been introduced as a ratio of buckling stress of web plate with openings to buckling stress of the corresponding solid web plate. The variation of ${\beta}$-factor against the aforementioned parameters has been reported. Furthermore, the critical plate slenderness ratio separating elastic buckling and yielding has been identified and discussed for two steel grades of DIN-17100, namely: ST-37/2 and ST-52/3. The FE results revealed that the minimum ${\beta}$-factor is 0.9 for web plates under uniform compression and 0.7 for those under both compression and tension.

The Effective Young's Modulus of Model Ice Sheet in Ice Basin (빙해수조 모형빙판의 유효탄성계수 산출)

  • Lee, Jae-Hwan;Choi, Bong-Kyun;Kim, Tae-Wan;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.315-322
    • /
    • 2015
  • In this paper, the theory of rectangular plate on the elastic foundation is used to get the relation equation between the effective Young’s modulus and the ice sheet deflection by applying the characteristic length concept, since the model ice sheet is rectangular shape in KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin. The obtained relation equation is equal to that of using the circular plate theory. A device is made and used to measure the deflection of ice plate using LVDT (Linear Variable Differential Transformer) for several loading cases and the procedure of experiments measuring the deflection used for getting the Young’s modulus is explained. In addition, the flexural strength value obtained through flexural strength experiments is compared with that of finite element analysis using the obtained effective Young’s modulus. Also, a nonlinear FEA (Finite Element Analysis) of cantilever ice beam is done with eroding effect and LS-DYNA result shows the fracture of brittle ice under 1 mm/s velocity load.

Stress concentrations around a circular hole in an infinite plate of arbitrary thickness

  • Dai, Longchao;Wang, Xinwei;Liu, Feng
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.143-157
    • /
    • 2010
  • This paper presents theoretical solutions for the three-dimensional (3D) stress field in an infinite isotropic elastic plate containing a through-the-thickness circular hole subjected to far-field in-plane loads by using Kane and Mindlin's assumption. The dangerous position, where the premature fracture or failure of the plate will take place, the expressions of the tangential stress at the surface of the hole and the out-of-plane stress constraint factor are found in a concise, explicit form. Based on the present theoretical solutions, a comprehensive analysis is performed on the deviated degree of the in-plane stresses from the related plane stress solutions, stress concentration and out-of-plane constraint, and the emphasis has been placed on the effects of the plate thickness, Poisson's ratio and the far-field in-plane loads on the stress field. The analytical solution shows that the effects of the plate thickness and Poisson's ratio on the deviation of the 3D in-plane stress components is obvious and could not be ignored, although their effects on distributions of the in-plane stress components are slight, and that the effect of the far-field in-plane loads is just on the contrary of that of the above two. When only the shear stress is loaded at far field, the stress concentration factor reach its peak value about 8.9% higher than that of the plane stress solutions, and the out-of-plane stress constraint factor can reach 1 at the surface of the hole and is the biggest among all cases considered.

Analysis of Strengthening Structures of Steel Manhole Cover (강재 맨홀뚜껑의 보강구조 해석)

  • Kim, Heung-Kyu;Yang, Young-Soo;Bae, Kang-Yul
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.54-62
    • /
    • 2014
  • Manhole cover, which is usually made of grey cast iron and consists of frame and cover, should have enough strength to support the heavy traffic load. The manhole cover made of cast iron has heavy weight to handle manually and is vulnerable to impact force with its brittle characteristics. Moreover, its production process of casting has been regulated in terms of environmental pollution. In this study, steel manhole cover is proposed to substitute the cast cover with a series of structural analyses to confirm its strength to support the test load for manhole cover. The cover of the proposed steel manhole cover is made of thin circular pate and stiffeners below the plate. Rectangular columns and hollow circular plate were selected for the shape of the stiffener. In order to give enough strength for the cover to behave within elastic range in the loading, strengthening structures of the cover were varied with increasing the number and the size of the stiffeners. The results of the analyses revealed that when both the hollow circular stiffener and cross stiffeners were additionally applied at the same time to the steel cover with longitudinal stiffeners, the maximum stress level in the cover could be reduced to that level presented in the cast cover.

The Stress Distribution around a Circular Hole Reinforced by a Ring of Different Material in a Plate under Biaxial Loading (이질원환(異質圓環)으로 보강(補强)된 원형(圓形)구멍 주위(周圍)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-67
    • /
    • 1969
  • The effect of a circular hole reinforced by a ring of different material in a plate under biaxial loadings is considered. In this problem, an infinitely large flat is assumed. The reinforcing ring is of uniform rectangular cross-section of same thickness as the plate. The outer boundary of the ring is cemented to the inner boundary of the hole in the plate. The plate is subjected to hydrostatic tension and pure shear loadings. The stress distribution around the hole is obtained by means of the two dimensional theory of elasticity. To conform the validities of above solutions, a series of photo-elastic stress analysis for a composite model was carried out. Fair agreements were observed between two sets of values. The conclusions arrived at are as follows: 1) The theoretical solutions are exact ones for the case of infinitely large flat plate. 2) The solutions can be used for most case of engineering problem if the bonding between the plate and ring is perfect. 3) If the ratio of Young's moduli of the ring and the plate is increased, the stresses in the plate decrease whereas those in the ring increase. 4) The stress concentration near the hole has localized effect. 5) Under hydrostatic tension, maximum principal stress and maximum shear stress increase as the ratio of inner and outer diameters of the ring increases. 6) Under pure shear, the stresses depend upon angular orientations of the points and maximum principal stress and maximum shear stress appear at 45 degree. They increase as the ratio of inner and outer diameters of the ring increases.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

The Actuation and Measurement of plate Structures at a Specific Direction by a Magnetostrictive Transducer (자기변형 트랜스듀서를 이용한 평판구조물의 특정방향 가진 및 측정)

  • 이주승;조승현;선경호;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.153-158
    • /
    • 2004
  • The coupling phenomenon between stress and magnetic induction, known as magnetostriction, has been successfully applied to generate and measure elastic waves. Most applications of this phenomenon thus far, however, are rather limited to cylindrical ferromagnetic waveguides. The main objective of this work is to develop a new patch-type, orientation-adjustable magnetostrictive transducer that is applicable for non-cylindrical, non-ferromagnetic waveguides. The existing patch-type transducer consisting of a ferromagnetic patch and a racetrack coil is useful to generate elastic waves only in one specific direction once the patch is bonded to a test specimen. However, the proposed transducer can transmit and receive elastic waves in any direction only with one patch at a given location. The proposed magnetostrictive transducer consists of a circular nickel patch, a figure-of-eight coil, and a couple of bias permanent magnets. Because of the unique configuration of the transducer, the propagating direction of the generated waves can be freely controlled since the set of bias magnets and the coil is not bonded to the magnetostrictive patch. In this work, the characteristics of the proposed transducer were investigated experimentally.

  • PDF

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.