• Title/Summary/Keyword: ejection

Search Result 708, Processing Time 0.029 seconds

An Experimental Study of Supersonic Dual Coaxial Free Jet

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Lee, Byeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2107-2115
    • /
    • 2003
  • A supersonic dual coaxial jet has been employed popularly for various industrial purposes, such as gasdynamic laser, supersonic ejector, noise control and enhancement of mixing. Detailed characteristics of supersonic dual coaxial jets issuing from an inner supersonic nozzle and outer sonic nozzles with various ejection angles are experimentally investigated. Three important parameters, such as pressure ratios of the inner and outer nozzles, and outer nozzle ejection angle, are chosen for a better understanding of jet structures in the present study. The results obtained from the present experimental study show that the Mach disk diameter becomes smaller, and the Mach disk moves toward the nozzle exit, and the length of the first shock cell decreases with the pressure ratio of the outer nozzle. It was also found that the highly underexpanded outer jet produces a new oblique shock wave, which makes jet structure much more complicated. On the other hand the outer jet ejection angle affects the structure of the inner jet structure less than the pressure ratio of the outer nozzle, relatively.

Interaction of Laser Beam with PZT - Target and Observation of Laser - Induced Plume and Particle Ejection (Laser와 PZT - Target간의 반응과 그에 따른 Plume 형성 및 입자 방출에 관한 연구)

  • Lee, Byeong-U
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.93-102
    • /
    • 1996
  • Laser-induced plume and laser-target interaction during pulsed laser deposition are demonstrated for a lead zirconate titanate (PZT). A KrF excimer laser (wavelength 248nm) was used and the laser was pulsed at 20Hz, with nominal pulse width of 20ns. The laser fluence was~$16J/cm^2,$ with 100mJ per pulse. The laser-induced plasma plume for nanosecond laser irradiation on PZT target has been investigated by optical emission spectra using an optical multichannel analyzer(OMA) and by direct observation of the plume using an ICCD high speed photography. OMA analysis showed two distinct ionic species with different expansion velocities of fast or slow according to their ionization states. The ion velocity of the front surface of the developing plume was about $10^7$cm/sec and corresponding kinetic energy was about 100eV. ICCD photograph showed another kind of even slower moving particles ejected from the target. These particles considered expelled molten parts of the target. SEM morphologies of the laser irradiated targets showed drastic melting and material removal by the laser pulse, and also showed the evidence of the molten particle ejection. The physics of the plasma(plume) formation and particle ejection has been discussed.

  • PDF

Analysis of High Burnup Fuel Behavior Under Rod Ejection Accident in the Westinghouse-Designed 950 MWe PWR

  • Chan Bock Lee;Byung Oh Cho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 1998
  • As there has arisen a concern that failure of the high burnup fuel under the reactivity-insertion accident(RIA) may occur at the energy lower than the expected, fuel behavior under the rod ejection accident in a typical Westinghouse-designed 950 MWe PWR was analyzed by using the three dimensional nodal transient neutronics code, PANBOX2 and the transient fuel rod performance analysis code, FRAP-T6. Fuel failure criteria versus the burnup was conservatively derived taking into account available test data and the possible fuel failure mechanisms. The high burnup and longer cycle length fuel loading scheme of a peak rod turnup of 68 MWD/kgU was selected for the analysis. Except three dimensional core neutronics calculation, the analysis used the same core conditions and assumptions as the conventional zero dimensional analysis. Results of three dimensional analysis showed that the peak fuel enthalpy during the rod ejection accident is less than one third of that calculated by the conventional zero dimensional analysis methodology and the fraction of fuel failure in the core is less than 4 %. Therefore, it can be said that the current design limit of less than 10 percent fuel failure and maintaining the core coolable geometry would be adequately satisfied under the rod ejection accident, even though the conservative fuel failure criteria derived from the test data are applied.

  • PDF

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

A Study on the Experimental Trend Analysis of Underwater Noise Factors in Compressed Water System of the Linear Pump Type (선형펌프방식 압축수 시스템의 실험적 수중소음인자별 경향분석 연구)

  • Yi, Jong-ju;Ahn, Kang-su;Sur, Jong-mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2021
  • In order to understand the underwater noise source factor of the linear pump type forced ejection system, a reduced-model compressed water experiment device was developed. The reduced-model compressed water experiment device consists of a reverberation tank, a linear pump type forced ejection device, and an underwater vehicle. The underwater noise source was selected from the hydraulic ram moving speed, the hydraulic ram/piston pipe spacing, the ejection pipe inlet/water ram area ratio, and the number of water ram inlets. The underwater vehicle was ejected into the reverberation tank by the device. The source level was derived from the measured sound pressure. The source level tends to increase as the hydraulic ram/piston tube spacing and the hydraulic ram moving speed increase. The source level tended to increase as the area ratio was increased, but the level was weak. The number of water ram inlet did not affect the source level.

Cardiac Response to Head-Out Water Immersion in Man

  • Choi, Jang-Kyu;Park, Won-Kun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.253-261
    • /
    • 2000
  • Head-out water immersion induces marked increase in the cardiac stroke volume. The present study was undertaken to characterize the stroke volume change by analyzing the aortic blood flow and left ventricular systolic time intervals. Ten men rested on a siting position in the air and in the water at $34.5^{circ}C$ for 30 min each. Their stroke volume, heart rate, ventricular systolic time intervals, and aortic blood flow indices were assessed by impedance cardiography. During immersion, the stroke volume increased 56%, with a slight (4%) decrease in heart rate, thus cardiac output increased ${\sim}50%.$ The slight increase in R-R interval was due to an equivalent increase in the systolic and diastolic time intervals. The ventricular ejection time was 20% increased, and this was mainly due to a decrease in pre-ejection period (28%). The mean arterial pressure increased 5 mmHg, indicating that the cardiac afterload was slightly elevated by immersion. The left ventricular end-diastolic volume index increased 24%, indicating that the cardiac preload was markedly elevated during immersion. The mean velocity and the indices of peak velocity and peak acceleration of aortic blood flow were all increased by ${\sim}30%,$ indicating that the left ventricular contractile force was enhanced by immersion. These results suggest that the increase in stroke volume during immersion is characterized by an increase in ventricular ejection time and aortic blood flow velocity, which may be primarily attributed to the increased cardiac preload and the muscle length-dependent increase in myocardial contractile force.

  • PDF

A Study on the Left Ventricular Function Evaluation with ECG Gated Cardiac Blood Pool Scan (ECG Gated Cardiac Blood Poot Scan에서 좌심실기능(左心室機能) 분석(分析)에 관(關)한 연구(硏究))

  • Chung, June-Key;Lee, Jung-Kyoon;Kim, Kwang-Won;Lee, Myung-Chul;Cho, Bo-Yeon;Lee, Young-Woo;Koh, Chang-Soon;Han, Man-Chung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 1980
  • Most of clinical morbidity in cardiology are associated with abnormalities of the left ventricle. Several methods have been developed to measure the left ventricular function, including cardiac catheterization with cineangiography, echocardiography, and systolic time interval. But these methods have many limitations. ECG gated cardiac blood pool scan provides a safe, noninvasive, repeatable method for determining the left ventricular function. Utilizing the cardiac blood pool scan, we measured the left ventricular function in 165 cardiac patients, and in 26 normal subject. 1. Left ventricular ejection fractions were measured by cardiac blood pool scan, and compared in 20 patients with that measured by x-ray cineangiography. Correlation coefficient was 0.885. 2. Ejection fractions were classified by funtional class made in New York Heart Association. Ejection fractions well represented the functional status. 3. Ejection fractions decreased in cardiomyopathy ($20.1{\pm}4.8%$) and ischemic heart disease ($34.4{\pm}16.7%$). Impaired ejection fractions in myocardial infarction were associated with the extent of infarction. 4. Regional left ventricular wall motion was evaluated from the end-diastolic and end-systolic images. In cardiomyopathy diffuse hypokinesia was noted and in myocardial infarction akinesia was noted on the infarcted areas.

  • PDF

Wear Characteristics for Rod and Nozzle of Jetting Dispenser Driven by Dual Piezoelectric Actuators Under High Frequency with Phosphor-containing Liquid (형광체 함유 용액 고속 토출 조건에서의 듀얼 압전 디스펜서 공이와 노즐의 마모 특성 평가)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;An, Jun-Wook;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • An ultra-high precise ejection process is essential in a dispensing system for fabricating various precision parts such as a semiconductor, LED, and camera module. The size of such parts has been decreasing, which implies that a precise ejecting technique is required. A phosphor-containing liquid is ejected via a dispenser using dual piezoelectric actuators that are used for generating a high-speed dispensing mechanism. The rod and nozzle continuously contact in high speed to eject the liquid. However, the high-strength filler or phosphor in the liquid causes wear on the surfaces of the rod and nozzle during the dispensing process. As a result, the ejection reliability decreases as the wear on the surfaces increases. Therefore, it is necessary to estimate the wear characteristics of the rod and nozzle via an experiment and FE analysis. Reliability rests up to 1,000 cycles are conducted under relatively severe conditions. The flow rate and surfaces roughness of the rod and nozzle are measured in each ejection cycle. The surface images and wear volume are obtained before and after the tests and the ejection reliability is confirmed by measuring the flow rate of the liquid. The experimental results show that the ejection reliability is maintained up to 1,000k cycles; these results are validated by the simulation results.

Rotational instability as a source of asteroidal dust near Earth

  • Jo, Hangbin;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.44.2-45
    • /
    • 2021
  • As implied by the zodiacal light and spacecraft impact measurements, the space between large bodies in our Solar System is filled with interplanetary dust particles (IDPs). IDPs give us deeper insight into the composition and evolution of the Solar System, as well as being a crucial reference for extrasolar research. IDPs can be interpreted as bearers of carbon and organic materials, and thus, their interaction with Earth can be considered as important factors for the birth of terrestrial life. One of the key routes of IDPs entering Earth is via meteoroid streams (Love and Brownlee 1993). The Geminid meteoroid stream is a notable example. Together with its source asteroid (3200) Phaethon, the Phaethon-Geminid stream complex (PGC) (Whipple 1983; Gustafson 1989) can potentially provide information on the properties and evolution of IDPs in near-Earth space. DESTINY+* is a JAXA/ISAS spacecraft planned to launch in 2024 to explore the physical and chemical features of near-Earth IDPs and uncover the dust ejection mechanism of active near-Earth asteroids, especially Phaethon (Arai et al. 2018). Previous studies on the dust ejection mechanism of Phaethon have various degrees of success in explaining the ejection of submillimeter particles and try to recreate the dust replenishment rate of the Geminid stream. However, none of them are satisfactory for explaining the observed Geminid stream, especially for larger particles of a millimeter and centimeter scales. Inspired by the discovery of rotational mass shedding in the Main Belt region (Jewitt et al., 2014), we investigate a dust ejection scenario by rotational instability on Phaethon. Using the N-body integrator MERCURY6 (Chambers 1999; modified by Jeong 2014), we performed a long-term integration of dust particles of various sizes ejected at ~1 m/s. Through this process, we discuss the implications Phaethon's rotation may have on its ejection, the formation and evolution of IDP by this mechanism, and contribute to the DESTINY+ mission.

  • PDF

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Cooling after Ejection (사출 성형품의 금형내 잔류응력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.251-256
    • /
    • 2001
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of the thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint has been done. Free volume theory has been used for the non-equilibrium density state by the fast cooling. At ejection, the redistribution of stress together with instantaneous deformation has been considered. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of deformation. Two typical mold geometries are used to test the numerical simulation.

  • PDF